--- license: apache-2.0 base_models: - open-r1/OlympicCoder-7B - Qwen/Qwen2.5-Coder-7B-Instruct - CodeV-R1-Qwen-7B - TIGER-Lab/VisCoder-7B - julien31/Soar-qwen-7b - Tesslate/Tessa-Rust-T1-7B - Snowflake/Arctic-Text2SQL-R1-7B - westenfelder/Qwen2.5-Coder-7B-Instruct-NL2SH language: - en pipeline_tag: text-generation tags: - merge - programming - code generation - code - codeqwen - moe - coding - coder - qwen2 - chat - qwen - qwen-coder - mixture of experts - qwen2moe - 8X7B - shared expert - mlx library_name: mlx base_model: DavidAU/Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B --- # Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B-q8-mlx This model [Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B-q8-mlx](https://huggingface.co/Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B-q8-mlx) was converted to MLX format from [DavidAU/Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B](https://huggingface.co/DavidAU/Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B) using mlx-lm version **0.26.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("Qwen2.5-8x7B-Vee-Eight-Coder-Instruct-53B-q8-mlx") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```