import torch import torch.nn.functional as F def total_variation_loss(x): """Total variation regularization""" batch_size = x.size(0) h_tv = torch.abs(x[:, :, 1:, :] - x[:, :, :-1, :]).sum() w_tv = torch.abs(x[:, :, :, 1:] - x[:, :, :, :-1]).sum() return (h_tv + w_tv) / batch_size def gradient_loss(x): """Sobel gradient loss""" sobel_x = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=x.device).view(1, 1, 3, 3) sobel_y = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=x.device).view(1, 1, 3, 3) grad_x = F.conv2d(x, sobel_x.repeat(x.size(1), 1, 1, 1), padding=1, groups=x.size(1)) grad_y = F.conv2d(x, sobel_y.repeat(x.size(1), 1, 1, 1), padding=1, groups=x.size(1)) return torch.mean(grad_x**2 + grad_y**2) def diffusion_loss(model, x0, t, noise_scheduler, config): xt, noise = noise_scheduler.apply_noise(x0, t) # Get both noisy image and noise pred_noise = model(xt, t) # MSE loss between predicted noise and actual noise mse_loss = F.mse_loss(pred_noise, noise) # Re-enable regularization with very small weights since base training is stable tv_loss = total_variation_loss(xt) grad_loss = gradient_loss(xt) # Very small regularization weights to preserve the good training dynamics total_loss = mse_loss + config.tv_weight * tv_loss + 0.001 * grad_loss # Debug: check for extreme values if torch.isnan(total_loss) or total_loss > 1e6: print(f"WARNING: Extreme loss detected!") print(f"MSE: {mse_loss.item():.4f}, TV: {tv_loss.item():.4f}, Grad: {grad_loss.item():.4f}") print(f"Noise range: [{noise.min().item():.4f}, {noise.max().item():.4f}]") print(f"Pred range: [{pred_noise.min().item():.4f}, {pred_noise.max().item():.4f}]") return total_loss