import torch from model import SmoothDiffusionUNet from noise_scheduler import FrequencyAwareNoise from config import Config from torchvision.utils import save_image, make_grid import numpy as np def deterministic_sample(model, noise_scheduler, device, n_samples=4): """Deterministic sampling - just do a few big denoising steps""" config = Config() model.eval() with torch.no_grad(): # Start with noise but not too extreme x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.5 print(f"Starting simplified sampling for {n_samples} samples...") # Use fewer, bigger steps - more like denoising than full diffusion timesteps = [400, 300, 200, 150, 100, 70, 50, 30, 20, 10, 5, 1] for i, t_val in enumerate(timesteps): print(f"Step {i+1}/{len(timesteps)}, t={t_val}") t_tensor = torch.full((n_samples,), t_val, device=device, dtype=torch.long) # Get model prediction predicted_noise = model(x, t_tensor) # Simple denoising step alpha_bar_t = noise_scheduler.alpha_bars[t_val].item() # Predict clean image pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1, 1) # Move towards clean prediction if i < len(timesteps) - 1: # Not final step - blend next_t = timesteps[i + 1] alpha_bar_next = noise_scheduler.alpha_bars[next_t].item() # Add some noise for next step noise_scale = np.sqrt(1 - alpha_bar_next) noise = torch.randn_like(x) * 0.1 # Much less noise x = np.sqrt(alpha_bar_next) * pred_x0 + noise_scale * noise else: # Final step x = pred_x0 x = torch.clamp(x, -1.5, 1.5) # Prevent drift if i % 3 == 0: print(f" Current range: [{x.min():.3f}, {x.max():.3f}], std: {x.std():.3f}") # Final clamp x = torch.clamp(x, -1, 1) print(f"Final samples:") print(f" Range: [{x.min():.3f}, {x.max():.3f}]") print(f" Mean: {x.mean():.3f}, Std: {x.std():.3f}") # Convert to display range x_display = torch.clamp((x + 1) / 2, 0, 1) # Create and save grid grid = make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) save_image(grid, "simplified_samples.png") print(f"Samples saved to simplified_samples.png") return x, grid def progressive_sample(model, noise_scheduler, device, n_samples=4): """Progressive denoising - start from less noise""" config = Config() model.eval() with torch.no_grad(): # Start from moderately noisy image instead of pure noise x = torch.randn(n_samples, 3, config.image_size, config.image_size, device=device) * 0.3 print(f"Starting progressive denoising for {n_samples} samples...") # Start from a moderate timestep instead of maximum noise start_t = 200 for step, t in enumerate(reversed(range(0, start_t))): if step % 50 == 0: print(f"Denoising step {step}/{start_t}, t={t}") t_tensor = torch.full((n_samples,), t, device=device, dtype=torch.long) # Get prediction predicted_noise = model(x, t_tensor) # Standard DDPM step but with more stability alpha_t = noise_scheduler.alphas[t].item() alpha_bar_t = noise_scheduler.alpha_bars[t].item() beta_t = noise_scheduler.betas[t].item() if t > 0: alpha_bar_prev = noise_scheduler.alpha_bars[t-1].item() # Predict x0 pred_x0 = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) pred_x0 = torch.clamp(pred_x0, -1, 1) # Posterior mean coeff1 = np.sqrt(alpha_t) * (1 - alpha_bar_prev) / (1 - alpha_bar_t) coeff2 = np.sqrt(alpha_bar_prev) * beta_t / (1 - alpha_bar_t) mean = coeff1 * x + coeff2 * pred_x0 # Reduced noise for stability if t > 1: posterior_variance = beta_t * (1 - alpha_bar_prev) / (1 - alpha_bar_t) noise = torch.randn_like(x) # Reduce noise by half for more stability x = mean + np.sqrt(posterior_variance) * noise * 0.5 else: x = mean else: x = (x - np.sqrt(1 - alpha_bar_t) * predicted_noise) / np.sqrt(alpha_bar_t) # Gentle clamping x = torch.clamp(x, -1.2, 1.2) x = torch.clamp(x, -1, 1) print(f"Progressive samples:") print(f" Range: [{x.min():.3f}, {x.max():.3f}]") print(f" Mean: {x.mean():.3f}, Std: {x.std():.3f}") x_display = torch.clamp((x + 1) / 2, 0, 1) grid = make_grid(x_display, nrow=2, normalize=False, pad_value=1.0) save_image(grid, "progressive_samples.png") print(f"Samples saved to progressive_samples.png") return x, grid def main(): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model checkpoint = torch.load('model_final.pth', map_location=device) config = Config() model = SmoothDiffusionUNet(config).to(device) noise_scheduler = FrequencyAwareNoise(config) model.load_state_dict(checkpoint) print("=== TRYING DETERMINISTIC SAMPLING ===") deterministic_sample(model, noise_scheduler, device, n_samples=4) print("\n=== TRYING PROGRESSIVE SAMPLING ===") progressive_sample(model, noise_scheduler, device, n_samples=4) if __name__ == "__main__": main()