File size: 1,174 Bytes
e76efbc
 
 
f168e39
6d366b4
 
 
 
 
e76efbc
 
6d366b4
e76efbc
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
e76efbc
6d366b4
 
 
e76efbc
3e45ab9
6d366b4
 
e76efbc
6d366b4
e76efbc
91aaf5b
3042468
91aaf5b
 
e76efbc
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
f168e39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
base_model: microsoft/phi-4
library_name: peft
license: mit
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
---

# Model Card for FlowerTune-phi-4-NLP-PEFT

This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.

The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/).

## Model Details

Please check the following GitHub project for model details and evaluation results:

[https://github.com/mrs83/FlowerTune-phi-4-NLP](https://github.com/mrs83/FlowerTune-phi-4-NLP)

## How to Get Started with the Model

Use this model as:

```
from peft import PeftModel
from transformers import AutoModelForCausalLM

base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-4")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-phi-4-NLP-PEFT")
```

### Evaluation Results (Accuracy)

- **STEM**: 40.66 %
- **Social Sciences**: 74.52 %
- **Humanities**: 51.75 %
- **Average**: 55.64 %

### Communication Budget

45804.69  Megabytes

### Framework versions

- PEFT 0.14.0
- Flower 1.13.0