File size: 1,174 Bytes
e76efbc f168e39 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 3e45ab9 6d366b4 e76efbc 6d366b4 e76efbc 91aaf5b 3042468 91aaf5b e76efbc 6d366b4 e76efbc 6d366b4 e76efbc 6d366b4 f168e39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
base_model: microsoft/phi-4
library_name: peft
license: mit
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
---
# Model Card for FlowerTune-phi-4-NLP-PEFT
This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.
The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/).
## Model Details
Please check the following GitHub project for model details and evaluation results:
[https://github.com/mrs83/FlowerTune-phi-4-NLP](https://github.com/mrs83/FlowerTune-phi-4-NLP)
## How to Get Started with the Model
Use this model as:
```
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("microsoft/phi-4")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-phi-4-NLP-PEFT")
```
### Evaluation Results (Accuracy)
- **STEM**: 40.66 %
- **Social Sciences**: 74.52 %
- **Humanities**: 51.75 %
- **Average**: 55.64 %
### Communication Budget
45804.69 Megabytes
### Framework versions
- PEFT 0.14.0
- Flower 1.13.0 |