nielsr HF Staff commited on
Commit
851bc66
·
verified ·
1 Parent(s): 0f38341

Add model card for SANA 1.5

Browse files

This PR adds a model card, ensuring the model can be found at https://huggingface.co/models?pipeline_tag=text-to-image.
It also adds a link to https://huggingface.co/papers/2501.18427, as well as to the Github repo.

Files changed (1) hide show
  1. README.md +22 -0
README.md CHANGED
@@ -1,7 +1,15 @@
 
 
 
 
1
  # Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
2
 
3
  [[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)]
4
 
 
 
 
 
5
  ![demo](assets/dc_ae_demo.gif)
6
  <p align="center">
7
  <b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.
@@ -111,3 +119,17 @@ If DC-AE is useful or relevant to your research, please kindly recognize our con
111
  year={2024}
112
  }
113
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-to-image
3
+ ---
4
+
5
  # Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models
6
 
7
  [[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)]
8
 
9
+ This repository contains the model of the paper [SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer](https://huggingface.co/papers/2501.18427).
10
+
11
+ Project page: https://hanlab.mit.edu/projects/sana/
12
+
13
  ![demo](assets/dc_ae_demo.gif)
14
  <p align="center">
15
  <b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders.
 
119
  year={2024}
120
  }
121
  ```
122
+
123
+ The work on SANA 1.5 can be cited as follows:
124
+
125
+ ```
126
+ @misc{xie2025sana,
127
+ title={SANA 1.5: Efficient Scaling of Training-Time and Inference-Time Compute in Linear Diffusion Transformer},
128
+ author={Enze Xie and Junyu Chen and Han Cai and Junsong Chen and Haotian Tang and Yao Lu and Song Han},
129
+ year={2025},
130
+ eprint={2501.18427},
131
+ archivePrefix={arXiv},
132
+ primaryClass={cs.CV},
133
+ url={https://arxiv.org/abs/2501.18427},
134
+ }
135
+ ```