--- library_name: peft license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - generated_from_trainer datasets: - teknium/OpenHermes-2.5 model-index: - name: outputs/qlora-out results: [] --- "Don't learn by adding vocabulary to vocab." This model is completely broken. I figured it out after 6 hours of training. ```log Traceback (most recent call last): File "/data/minpeter/qlora-llama-1b-chatml-v2/merge.py", line 6, in model = PeftModel.from_pretrained(base_model, peft_model_id) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/peft_model.py", line 581, in from_pretrained load_result = model.load_adapter( ^^^^^^^^^^^^^^^^^^^^ File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/peft_model.py", line 1239, in load_adapter load_result = set_peft_model_state_dict( ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/peft/utils/save_and_load.py", line 451, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/minpeter/anaconda3/envs/axo/lib/python3.12/site-packages/torch/nn/modules/module.py", line 2584, in load_state_dict raise RuntimeError( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.model.embed_tokens.modules_to_save.default.weight: copying a param with shape torch.Size([128258, 2048]) from checkpoint, the shape in current model is torch.Size([128256, 2048]). size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape torch.Size([128258, 2048]) from checkpoint, the shape in current model is torch.Size([128256, 2048]). ``` [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: meta-llama/Llama-3.2-1B load_in_8bit: false load_in_4bit: true strict: false datasets: - path: teknium/OpenHermes-2.5 type: chat_template chat_template: chatml field_messages: conversations message_field_role: from message_field_content: value shards: 1 save_safetensors: true auto_resume_from_checkpoints: true save_steps: 200 chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "axolotl" wandb_entity: "kasfiekfs-e" wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 # saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: tokens: - <|im_start|> special_tokens: eos_token: <|im_end|> pad_token: <|end_of_text|> lora_modules_to_save: - lm_head - embed_tokens # <--- unsloth config ---> unsloth_lora_mlp: true unsloth_lora_qkv: true unsloth_lora_o: true ```

# outputs/qlora-out This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the teknium/OpenHermes-2.5 dataset. It achieves the following results on the evaluation set: - Loss: 0.8874 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.2931 | 0.0000 | 1 | 1.3097 | | 1.0603 | 0.2500 | 5419 | 0.9798 | | 0.7964 | 0.5000 | 10838 | 0.9218 | | 0.7602 | 0.7500 | 16257 | 0.8874 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0