Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,170 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- intent-classification
|
7 |
+
- mental-health
|
8 |
+
- transformer
|
9 |
+
- conversational-ai
|
10 |
+
pipeline_tag: text-classification
|
11 |
+
base_model: distilbert-base-uncased
|
12 |
+
---
|
13 |
+
|
14 |
+
# 🧠 Intent Classifier (MindPadi)
|
15 |
+
|
16 |
+
The `intent_classifier` is a transformer-based text classification model trained to detect **user intents** in a mental health support setting. It powers the MindPadi assistant's ability to route conversations to the appropriate modules—like emotional support, scheduling, reflection, or journal analysis—based on the user’s message.
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
## 📝 Model Overview
|
21 |
+
|
22 |
+
- **Model Architecture:** DistilBERT (uncased) + classification head
|
23 |
+
- **Task:** Intent Classification
|
24 |
+
- **Classes:** Over 20 intent categories (e.g., `vent`, `gratitude`, `help_request`, `journal_analysis`)
|
25 |
+
- **Model Size:** ~66M parameters
|
26 |
+
- **Files:**
|
27 |
+
- `config.json`
|
28 |
+
- `pytorch_model.bin` or `model.safetensors`
|
29 |
+
- `tokenizer_config.json`, `vocab.txt`, `tokenizer.json`
|
30 |
+
- `checkpoint-*/` (optional training checkpoints)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
## ✅ Intended Use
|
35 |
+
|
36 |
+
### ✔️ Use Cases
|
37 |
+
- Detecting user intent in MindPadi mental health conversations
|
38 |
+
- Enabling context-specific dialogue flows
|
39 |
+
- Assisting with journal entry triage and tagging
|
40 |
+
- Triggering therapy-related tools (e.g., emotion check-ins, PubMed summaries)
|
41 |
+
|
42 |
+
### 🚫 Not Intended For
|
43 |
+
- Multilingual intent classification (English-only)
|
44 |
+
- Legal or medical diagnosis tasks
|
45 |
+
- Multi-label classification (currently single-label per input)
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
## 💡 Example Intents Detected
|
50 |
+
|
51 |
+
| Intent | Description |
|
52 |
+
|--------------------|-------------------------------------------------------|
|
53 |
+
| `vent` | User expressing frustration or emotion freely |
|
54 |
+
| `help_request` | Seeking mental health support |
|
55 |
+
| `schedule_session` | Booking a therapy check-in |
|
56 |
+
| `gratitude` | Showing appreciation for support |
|
57 |
+
| `journal_analysis` | Submitting a journal entry for AI feedback |
|
58 |
+
| `reflection` | Talking about personal growth or setbacks |
|
59 |
+
| `not_sure` | Unsure or unclear message from user |
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
## 🛠️ Training Details
|
64 |
+
|
65 |
+
- **Base Model:** `distilbert-base-uncased`
|
66 |
+
- **Dataset:** Curated and annotated conversations (`training/datasets/finetuned/intents/`)
|
67 |
+
- **Script:** `training/train_intent_classifier.py`
|
68 |
+
- **Preprocessing:**
|
69 |
+
- Text normalization (lowercasing, punctuation removal)
|
70 |
+
- Label encoding
|
71 |
+
- **Loss:** CrossEntropyLoss
|
72 |
+
- **Metrics:** Accuracy, F1-score
|
73 |
+
- **Tokenizer:** WordPiece (DistilBERT tokenizer)
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
+
## 📊 Evaluation
|
78 |
+
|
79 |
+
| Metric | Score |
|
80 |
+
|-----------|-------------|
|
81 |
+
| Accuracy | 91.3% |
|
82 |
+
| F1-score | 89.8% |
|
83 |
+
| Recall@3 | 97.1% |
|
84 |
+
| Precision | 88.4% |
|
85 |
+
|
86 |
+
Evaluation performed on a held-out validation split of MindPadi intent dataset.
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
## 🔍 Example Usage
|
91 |
+
|
92 |
+
```python
|
93 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
94 |
+
import torch
|
95 |
+
|
96 |
+
model = AutoModelForSequenceClassification.from_pretrained("mindpadi/intent_classifier")
|
97 |
+
tokenizer = AutoTokenizer.from_pretrained("mindpadi/intent_classifier")
|
98 |
+
|
99 |
+
text = "I’m struggling with my emotions today"
|
100 |
+
inputs = tokenizer(text, return_tensors="pt")
|
101 |
+
outputs = model(**inputs)
|
102 |
+
|
103 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
104 |
+
print("Predicted intent ID:", predicted_class)
|
105 |
+
````
|
106 |
+
|
107 |
+
To map `intent ID → label`, load your label encoder from:
|
108 |
+
|
109 |
+
```python
|
110 |
+
from joblib import load
|
111 |
+
label_encoder = load("intent_encoder/label_encoder.joblib")
|
112 |
+
print("Predicted intent:", label_encoder.inverse_transform([predicted_class])[0])
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## 🔌 Inference Endpoint Example
|
117 |
+
|
118 |
+
```python
|
119 |
+
import requests
|
120 |
+
|
121 |
+
API_URL = "https://api-inference.huggingface.co/models/mindpadi/intent_classifier"
|
122 |
+
headers = {"Authorization": f"Bearer <your-api-token>"}
|
123 |
+
payload = {"inputs": "Can I book a mental health session?"}
|
124 |
+
|
125 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
126 |
+
print(response.json())
|
127 |
+
```
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
## ⚠️ Limitations
|
132 |
+
|
133 |
+
* Not robust to long-form texts (>256 tokens); truncate or summarize input.
|
134 |
+
* May confuse overlapping intents like `vent` and `help_request`
|
135 |
+
* False positives possible in vague or sarcastic inputs
|
136 |
+
* Requires pairing with fallback model (`intent_fallback`) for reliability
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
## 🔐 Ethical Considerations
|
141 |
+
|
142 |
+
* This model is for **supportive routing**, not clinical diagnosis
|
143 |
+
* Use with user consent and proper data privacy safeguards
|
144 |
+
* Intent predictions should not override human judgment in sensitive contexts
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
## 📂 Integration Points
|
149 |
+
|
150 |
+
| Location | Functionality |
|
151 |
+
| ---------------------------------- | --------------------------------------------- |
|
152 |
+
| `app/chatbot/intent_classifier.py` | Main classifier logic |
|
153 |
+
| `app/chatbot/intent_router.py` | Routes based on predicted intent |
|
154 |
+
| `app/utils/embedding_search.py` | Uses `intent_encoder` for similarity fallback |
|
155 |
+
| `data/processed_intents.json` | Annotated intent samples |
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
## 📜 License
|
160 |
+
|
161 |
+
MIT License – freely available for commercial and non-commercial use.
|
162 |
+
|
163 |
+
|
164 |
+
## 📬 Contact
|
165 |
+
|
166 |
+
* **Team:** MindPadi AI Developers
|
167 |
+
* **Profile:** [https://huggingface.co/mindpadi](https://huggingface.co/mindpadi)
|
168 |
+
* **Email:** \[[you@example.com](mailto:you@example.com)]
|
169 |
+
|
170 |
+
*Last updated: May 2025*
|