test / pipeline.py
miittnnss's picture
Create pipeline.py
737165a
raw
history blame
908 Bytes
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
class PretrainedPipeline():
def __init__(self):
self.device = torch.device("cpu")
self.generator = Generator() # Instantiate your GAN generator class
self.generator.load_state_dict(torch.load("pytorch_model.bin", map_location=self.device))
self.generator.eval()
def generate_image(self):
with torch.no_grad():
noise = torch.randn(1, 128, 1, 1).to(self.device) # Assuming input noise size is 100
generated_image_tensor = self.generator(noise)
generated_image = generated_image_tensor.cpu().detach().squeeze(0)
# Assuming the generator output is in the range [-1, 1]
generated_image = (generated_image + 1) / 2.0
pil_image = transforms.ToPILImage()(generated_image)
return pil_image