--- base_model: - Qwen/Qwen2-VL-2B-Instruct license: mit library_name: transformers pipeline_tag: image-text-to-text --- # GUI-Actor-2B with Qwen2-VL-2B as backbone VLM This model was introduced in the paper [GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents](https://www.arxiv.org/pdf/2506.03143). It is developed based on [Qwen2-VL-2B-Instruct ](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct), augmented by an attention-based action head and finetuned to perform GUI grounding using the dataset [here (coming soon)](). For more details on model design and evaluation, please check: [🏠 Project Page](https://microsoft.github.io/GUI-Actor/) | [💻 Github Repo](https://github.com/microsoft/GUI-Actor) | [📑 Paper](https://www.arxiv.org/pdf/2506.03143). | Model Name | Hugging Face Link | |--------------------------------------------|--------------------------------------------| | **GUI-Actor-7B-Qwen2-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2-VL) | | **GUI-Actor-2B-Qwen2-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-2B-Qwen2-VL) | | **GUI-Actor-7B-Qwen2.5-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-7B-Qwen2.5-VL) | | **GUI-Actor-3B-Qwen2.5-VL** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-3B-Qwen2.5-VL) | | **GUI-Actor-Verifier-2B** | [🤗 Hugging Face](https://huggingface.co/microsoft/GUI-Actor-Verifier-2B) | ## 📊 Performance Comparison on GUI Grounding Benchmarks Table 1. Main results on ScreenSpot-Pro, ScreenSpot, and ScreenSpot-v2 with **Qwen2-VL** as the backbone. † indicates scores obtained from our own evaluation of the official models on Huggingface. | Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot | ScreenSpot-v2 | |------------------|--------------|----------------|------------|----------------| | **_72B models:_** | AGUVIS-72B | Qwen2-VL | - | 89.2 | - | | UGround-V1-72B | Qwen2-VL | 34.5 | **89.4** | - | | UI-TARS-72B | Qwen2-VL | **38.1** | 88.4 | **90.3** | | **_7B models:_** | OS-Atlas-7B | Qwen2-VL | 18.9 | 82.5 | 84.1 | | AGUVIS-7B | Qwen2-VL | 22.9 | 84.4 | 86.0† | | UGround-V1-7B | Qwen2-VL | 31.1 | 86.3 | 87.6† | | UI-TARS-7B | Qwen2-VL | 35.7 | **89.5** | **91.6** | | GUI-Actor-7B | Qwen2-VL | **40.7** | 88.3 | 89.5 | | GUI-Actor-7B + Verifier | Qwen2-VL | 44.2 | 89.7 | 90.9 | | **_2B models:_** | UGround-V1-2B | Qwen2-VL | 26.6 | 77.1 | - | | UI-TARS-2B | Qwen2-VL | 27.7 | 82.3 | 84.7 | | GUI-Actor-2B | Qwen2-VL | **36.7** | **86.5** | **88.6** | | GUI-Actor-2B + Verifier | Qwen2-VL | 41.8 | 86.9 | 89.3 | Table 2. Main results on the ScreenSpot-Pro and ScreenSpot-v2 with **Qwen2.5-VL** as the backbone. | Method | Backbone VLM | ScreenSpot-Pro | ScreenSpot-v2 | |----------------|---------------|----------------|----------------| | **_7B models:_** | Qwen2.5-VL-7B | Qwen2.5-VL | 27.6 | 88.8 | | Jedi-7B | Qwen2.5-VL | 39.5 | 91.7 | | GUI-Actor-7B | Qwen2.5-VL | **44.6** | **92.1** | | GUI-Actor-7B + Verifier | Qwen2.5-VL | 47.7 | 92.5 | | **_3B models:_** | Qwen2.5-VL-3B | Qwen2.5-VL | 25.9 | 80.9 | | Jedi-3B | Qwen2.5-VL | 36.1 | 88.6 | | GUI-Actor-3B | Qwen2.5-VL | **42.2** | **91.0** | | GUI-Actor-3B + Verifier | Qwen2.5-VL | 45.9 | 92.4 | ## 🚀 Usage ```python import torch from qwen_vl_utils import process_vision_info from datasets import load_dataset from transformers import Qwen2VLProcessor from gui_actor.constants import chat_template from gui_actor.modeling import Qwen2VLForConditionalGenerationWithPointer from gui_actor.inference import inference # load model model_name_or_path = "microsoft/GUI-Actor-2B-Qwen2-VL" data_processor = Qwen2VLProcessor.from_pretrained(model_name_or_path) tokenizer = data_processor.tokenizer model = Qwen2VLForConditionalGenerationWithPointer.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map="cuda:0", attn_implementation="flash_attention_2" ).eval() # prepare example dataset = load_dataset("rootsautomation/ScreenSpot")["test"] example = dataset[0] print(f"Intruction: {example['instruction']}") print(f"ground-truth action region (x1, y1, x2, y2): {[round(i, 2) for i in example['bbox']]}") conversation = [ { "role": "system", "content": [ { "type": "text", "text": "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.", } ] }, { "role": "user", "content": [ { "type": "image", "image": example["image"], # PIL.Image.Image or str to path # "image_url": "https://xxxxx.png" or "https://xxxxx.jpg" or "file://xxxxx.png" or "", will be split by "base64," }, { "type": "text", "text": example["instruction"] }, ], }, ] # inference pred = inference(conversation, model, tokenizer, data_processor, use_placeholder=True, topk=3) px, py = pred["topk_points"][0] print(f"Predicted click point: [{round(px, 4)}, {round(py, 4)}]") # >> Model Response # Intruction: close this window # ground-truth action region (x1, y1, x2, y2): [0.9479, 0.1444, 0.9938, 0.2074] # Predicted click point: [0.9709, 0.1548] ``` ## 📝 Citation ``` @article{wu2025guiactor, title={GUI-Actor: Coordinate-Free Visual Grounding for GUI Agents}, author={Qianhui Wu and Kanzhi Cheng and Rui Yang and Chaoyun Zhang and Jianwei Yang and Huiqiang Jiang and Jian Mu and Baolin Peng and Bo Qiao and Reuben Tan and Si Qin and Lars Liden and Qingwei Lin and Huan Zhang and Tong Zhang and Jianbing Zhang and Dongmei Zhang and Jianfeng Gao}, year={2025}, eprint={2506.03143}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://www.arxiv.org/pdf/2506.03143}, } ```