File size: 5,639 Bytes
edaf13d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
callbacks:
ema:
_target_: flower.callbacks.ema.EMA
decay: 0.999
start_step: 0
save_ema_weights_in_callback_state: true
evaluate_ema_weights_instead: true
power: 0.6666666666666666
inv_gamma: 1.0
min_value: 0.0
max_value: 0.9999
rollout_lh:
_target_: flower.rollout.libero_rollout.RolloutLibero
_recursive_: false
env_cfg:
_target_: flower.wrappers.hulc_wrapper.HulcWrapper
skip_epochs: ${rollout_lh_skip_epochs}
benchmark_name: ${libero_benchmark}
rollout_freq: 10
num_videos: 0
num_sequences: 50
max_steps: 520
empty_cache: false
debug: false
n_eval: 50
num_procs: 10
use_mp: false
task_embedding_format: clip
device: ${device}
checkpoint:
_target_: pytorch_lightning.callbacks.ModelCheckpoint
save_top_k: 1
verbose: true
monitor: eval_lh/avg_seq_len
mode: max
dirpath: saved_models
filename: '{epoch:02d}_{eval_lh/avg_seq_len:.2f}'
every_n_epochs: ${callbacks.rollout_lh.rollout_freq}
datamodule:
transforms:
train:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: flower.utils.transforms.RandomShiftsAug
pad: 10
- _target_: flower.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: flower.utils.transforms.RandomShiftsAug
pad: 4
- _target_: flower.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
val:
rgb_static:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: flower.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
rgb_gripper:
- _target_: torchvision.transforms.Resize
size: 112
antialias: true
- _target_: flower.utils.transforms.ScaleImageTensor
- _target_: torchvision.transforms.Normalize
mean:
- 0.48145466
- 0.4578275
- 0.40821073
std:
- 0.26862954
- 0.26130258
- 0.27577711
_target_: flower.datasets.libero_data_module.LiberoDataModule
_recursive_: false
root_data_dir: ${root_data_dir}
action_space: 7
shuffle_val: false
benchmark_name: ${libero_benchmark}
observation_space:
rgb_obs:
- agentview_rgb
- eye_in_hand_rgb
depth_obs: []
state_obs:
- gripper_states
- joint_states
actions:
- rel_actions
language:
- language
proprioception_dims: None
datasets:
lang_dataset:
_target_: flower.datasets.libero_dataset.LiberoMultitaskDataset
key: lang
benchmark_name: ${libero_benchmark}
batch_size: ${batch_size}
proprio_state: ${datamodule.proprioception_dims}
obs_space: ${datamodule.observation_space}
num_workers: ${num_workers}
action_seq_len: ${act_seq_len}
obs_seq_len: ${obs_seq_len}
split_ratio: 0.0
model:
_target_: flower.models.flower.FLOWERVLA
_recursive_: false
vlm_path: microsoft/Florence-2-large
freeze_florence: false
freeze_vision_tower: false
vlm_prompt_style: default
token_dropout: 0.1
multistep: ${multistep}
num_sampling_steps: 4
lowdim_obs_dim: 7
action_dim: 7
act_window_size: 10
load_pretrained: true
pretrained_model_path: /home/hk-project-sustainebot/ft4740/code/flower_vla_policy/logs/runs/2025-02-05/10-17-02/360000_model_weights.pt
use_second_view: true
second_view_key: image_wrist
action_type_adaln: true
use_causal_attention: true
use_cross_attn: true
use_adaln_cond: false
use_readout_token: false
use_proprio: false
return_act_chunk: false
sampling_type: uniform
dit_dim: 1024
n_heads: 16
n_layers: 18
attn_pdrop: 0.1
resid_pdrop: 0.1
mlp_pdrop: 0.1
use_rope: true
use_nope: false
query_seq_len: 100
rope_theta: 32.0
optimizer_type: adamw
optimizer:
_target_: torch.optim.AdamW
transformer_weight_decay: 0.05
learning_rate: 2.0e-05
betas:
- 0.9
- 0.99
lr_scheduler:
lr_scheduler:
init_lr: 2.0e-05
init_lr_scale: 0.1
final_lr_scale: 0.5
total_steps: 50000
phase_ratio: (0.05, 0.1, 0.85)
lr: 2.0e-05
root_data_dir: /home/yagmurlu/code/MoDE_Calvin/dataset/task_ABC_D
lang_folder: lang_clip_resnet50
log_dir: ./logs
slurm: false
seed: 242
device: cuda
batch_size: 8
devices: 4
goal_window_size: 1
act_dim: 7
proprio_dims: 9
obs_dim: 512
goal_dim: 512
obs_seq_len: 1
act_seq_len: 10
multistep: ${act_seq_len}
p_last_state: 0
max_epochs: 30
rollout_lh_skip_epochs: 9
num_workers: 1
benchmark_name: ${libero_benchmark}
libero_benchmark: libero_goal
trainer:
devices: ${devices}
precision: bf16-mixed
max_epochs: ${max_epochs}
sync_batchnorm: true
accelerator: gpu
strategy: ddp
limit_train_batches: 1000
limit_val_batches: 4
logger:
_target_: pytorch_lightning.loggers.WandbLogger
save_dir: .
name: logger
group: mode
log_model: false
project: ${libero_benchmark}
entity: bennoq
id: ???
|