File size: 28,987 Bytes
5b3d06c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:69699
- loss:BinaryCrossEntropyLoss
base_model: cross-encoder/ms-marco-MiniLM-L2-v2
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- pearson
- spearman
- map
- mrr@10
- ndcg@10
model-index:
- name: cross-encoder/ms-marco-MiniLM-L2-v2 Finetuned on PV211 HomeWork
  results:
  - task:
      type: cross-encoder-correlation
      name: Cross Encoder Correlation
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson
      value: 0.8392209488671921
      name: Pearson
    - type: spearman
      value: 0.729809198818792
      name: Spearman
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.5685
      name: Map
    - type: mrr@10
      value: 0.557
      name: Mrr@10
    - type: ndcg@10
      value: 0.6146
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3511
      name: Map
    - type: mrr@10
      value: 0.5391
      name: Mrr@10
    - type: ndcg@10
      value: 0.3779
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.5917
      name: Map
    - type: mrr@10
      value: 0.6017
      name: Mrr@10
    - type: ndcg@10
      value: 0.645
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.5038
      name: Map
    - type: mrr@10
      value: 0.5659
      name: Mrr@10
    - type: ndcg@10
      value: 0.5459
      name: Ndcg@10
---

# cross-encoder/ms-marco-MiniLM-L2-v2 Finetuned on PV211 HomeWork

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L2-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L2-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [cross-encoder/ms-marco-MiniLM-L2-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L2-v2) <!-- at revision da2cadf7e0af92ed9f105f41e9857437e07b51f5 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("maennyn/pv211_beir_cqadupstack_crossencoder")
# Get scores for pairs of texts
pairs = [
    ['Do elevator upgrades increase your passive credit earnings, too?', 'I searched for a solution for this problem, but cannot find an answer (or exact replica of the problem) Basically, I set up Multisite on MAMP Pro (Apache port 80, MySQL Port 3306). The set up was smooth, and I created a new site via a subdirectory. The parent theme loads fine. I created a child theme, and it activates (it doesn\'t show a broken message). On the Appearance page it shows the message "This theme requires the parent theme", but underneath the Theme Description. However when I view the front page of the site, the page is blank, and there is no html at all. Would could possibly be the error? I spent a few hours on this already and it\'s not going really well. Code of child theme, only CSS, no functions.php or other php files in the child theme folder.               /*     Theme Name: Confit Child Theme     Author: Automattic     Template: confit     Description: Confit Child Theme 1     Version: 1.0     */          @import url(\'../confit/style.css\');        * Should also mention that the parent functions are not loading either.  Thanks!'],
    ['Traceback (most recent call last) error appears on terminal', "I've got a binary characteristic and a population $S$ with size $n$ and $P[X] = p$ such that $p$ may be small and $n$ is extremely large. Within this population are subpopulations of various sizes $S_0, S_1, \\dots, S_k \\subset S$. I'd like to be able to select each subpopulation in which $p_i < p$ with some concept of statistical significance. My first inclination is to observe that the standard error on each $p_i$ is $SE_i = \\sqrt{\\frac{\\hat{p_i}(1-\\hat{p_i})}{n}}$ and to compare upper bounds on confidence intervals. $\\{S_i \\; | \\; \\hat{p_i} + 3 \\cdot SE_i < p\\}$, for example. But when $\\hat{p_i} = 0$, then $SE_i = 0$, and this upper bound is 0 even for the smallest subpopulations (like those where $n_i = 1$). Is there any way to express uncertainty in $p_i$ when $\\hat{p_i} = 0$? Maybe through use of $p$ as a prior? **Edit:** It looks like the Jeffreys interval as described in Brown et al. is about what I'm after, though I'm not as-of-yet sure how to apply it."],
    ['Do I have to install a custom ROM if I root?', 'What is the difference between a battery and a charged capacitor? I can see lot of similarities between capacitor and battery. In both these charges are separated and When not connected in a circuit both can have same Potential difference `V`. The only difference is that battery runs for longer time but a capacitor discharges almost instantaneously. Why this difference? What is the exact cause for the difference in the discharge times?'],
    ['How to seprate words into two lines in one cell?', 'To me the word "curious" would be something you can be i.e. > I am curious what tomorrow will bring I recently read a text of a student I was supervising which used it as follows > A curious phenomenon is ... With which he meant to say that the phenomenon was peculiar, odd or strange. The only other case I have ever seen this is in the movie title: "The Curious Case of Benjamin Button", but that might be \'artistic freedom\' (since Curious Case has the nice C.. C..). My question is: is the usage of the word "curious" in the meaning of peculiar correct?'],
    ["Bought game on Steam, but it's not in my Library", "I'm looking to choose open source project hosting site for an F# project using SVN. CodePlex is where the .NET community in general and most F# projects are hosted, but I'm worried TFS + SvnBridge is going to give me headaches. So I'm looking elsewhere and seeking advice here. Or if you think CodePlex is still the best choice in my scenario, I'd like to hear that too. So far, Google Code is looking appealing to me. They have a clean interface and true SVN hosting. But there are close to no F# projects currently hosted (it's not even in their search by programming language list), so I'm wondering if there are any notable downsides besides the lack of community I might encounter. If there is yet another option, I'd like to hear that too. Thanks!"],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Do elevator upgrades increase your passive credit earnings, too?',
    [
        'I searched for a solution for this problem, but cannot find an answer (or exact replica of the problem) Basically, I set up Multisite on MAMP Pro (Apache port 80, MySQL Port 3306). The set up was smooth, and I created a new site via a subdirectory. The parent theme loads fine. I created a child theme, and it activates (it doesn\'t show a broken message). On the Appearance page it shows the message "This theme requires the parent theme", but underneath the Theme Description. However when I view the front page of the site, the page is blank, and there is no html at all. Would could possibly be the error? I spent a few hours on this already and it\'s not going really well. Code of child theme, only CSS, no functions.php or other php files in the child theme folder.               /*     Theme Name: Confit Child Theme     Author: Automattic     Template: confit     Description: Confit Child Theme 1     Version: 1.0     */          @import url(\'../confit/style.css\');        * Should also mention that the parent functions are not loading either.  Thanks!',
        "I've got a binary characteristic and a population $S$ with size $n$ and $P[X] = p$ such that $p$ may be small and $n$ is extremely large. Within this population are subpopulations of various sizes $S_0, S_1, \\dots, S_k \\subset S$. I'd like to be able to select each subpopulation in which $p_i < p$ with some concept of statistical significance. My first inclination is to observe that the standard error on each $p_i$ is $SE_i = \\sqrt{\\frac{\\hat{p_i}(1-\\hat{p_i})}{n}}$ and to compare upper bounds on confidence intervals. $\\{S_i \\; | \\; \\hat{p_i} + 3 \\cdot SE_i < p\\}$, for example. But when $\\hat{p_i} = 0$, then $SE_i = 0$, and this upper bound is 0 even for the smallest subpopulations (like those where $n_i = 1$). Is there any way to express uncertainty in $p_i$ when $\\hat{p_i} = 0$? Maybe through use of $p$ as a prior? **Edit:** It looks like the Jeffreys interval as described in Brown et al. is about what I'm after, though I'm not as-of-yet sure how to apply it.",
        'What is the difference between a battery and a charged capacitor? I can see lot of similarities between capacitor and battery. In both these charges are separated and When not connected in a circuit both can have same Potential difference `V`. The only difference is that battery runs for longer time but a capacitor discharges almost instantaneously. Why this difference? What is the exact cause for the difference in the discharge times?',
        'To me the word "curious" would be something you can be i.e. > I am curious what tomorrow will bring I recently read a text of a student I was supervising which used it as follows > A curious phenomenon is ... With which he meant to say that the phenomenon was peculiar, odd or strange. The only other case I have ever seen this is in the movie title: "The Curious Case of Benjamin Button", but that might be \'artistic freedom\' (since Curious Case has the nice C.. C..). My question is: is the usage of the word "curious" in the meaning of peculiar correct?',
        "I'm looking to choose open source project hosting site for an F# project using SVN. CodePlex is where the .NET community in general and most F# projects are hosted, but I'm worried TFS + SvnBridge is going to give me headaches. So I'm looking elsewhere and seeking advice here. Or if you think CodePlex is still the best choice in my scenario, I'd like to hear that too. So far, Google Code is looking appealing to me. They have a clean interface and true SVN hosting. But there are close to no F# projects currently hosted (it's not even in their search by programming language list), so I'm wondering if there are any notable downsides besides the lack of community I might encounter. If there is yet another option, I'd like to hear that too. Thanks!",
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Correlation

* Dataset: `sts_dev`
* Evaluated with [<code>CrossEncoderCorrelationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderCorrelationEvaluator)

| Metric       | Value      |
|:-------------|:-----------|
| pearson      | 0.8392     |
| **spearman** | **0.7298** |

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.5685 (+0.0790)     | 0.3511 (+0.0901)     | 0.5917 (+0.1721)     |
| mrr@10      | 0.5570 (+0.0795)     | 0.5391 (+0.0392)     | 0.6017 (+0.1750)     |
| **ndcg@10** | **0.6146 (+0.0742)** | **0.3779 (+0.0529)** | **0.6450 (+0.1444)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5038 (+0.1137)     |
| mrr@10      | 0.5659 (+0.0979)     |
| **ndcg@10** | **0.5459 (+0.0905)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 69,699 training samples
* Columns: <code>query</code>, <code>document</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | document                                                                                           | label                                           |
  |:--------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                          | string                                                                                             | int                                             |
  | details | <ul><li>min: 15 characters</li><li>mean: 49.33 characters</li><li>max: 125 characters</li></ul> | <ul><li>min: 45 characters</li><li>mean: 793.68 characters</li><li>max: 18801 characters</li></ul> | <ul><li>0: ~74.50%</li><li>1: ~25.50%</li></ul> |
* Samples:
  | query                                                                         | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | label          |
  |:------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Do elevator upgrades increase your passive credit earnings, too?</code> | <code>I searched for a solution for this problem, but cannot find an answer (or exact replica of the problem) Basically, I set up Multisite on MAMP Pro (Apache port 80, MySQL Port 3306). The set up was smooth, and I created a new site via a subdirectory. The parent theme loads fine. I created a child theme, and it activates (it doesn't show a broken message). On the Appearance page it shows the message "This theme requires the parent theme", but underneath the Theme Description. However when I view the front page of the site, the page is blank, and there is no html at all. Would could possibly be the error? I spent a few hours on this already and it's not going really well. Code of child theme, only CSS, no functions.php or other php files in the child theme folder.               /*     Theme Name: Confit Child Theme     Author: Automattic     Template: confit     Description: Confit Child Theme 1     Version: 1.0     */          @import url('../confit/style.css');        * Should also menti...</code> | <code>0</code> |
  | <code>Traceback (most recent call last) error appears on terminal</code>      | <code>I've got a binary characteristic and a population $S$ with size $n$ and $P[X] = p$ such that $p$ may be small and $n$ is extremely large. Within this population are subpopulations of various sizes $S_0, S_1, \dots, S_k \subset S$. I'd like to be able to select each subpopulation in which $p_i < p$ with some concept of statistical significance. My first inclination is to observe that the standard error on each $p_i$ is $SE_i = \sqrt{\frac{\hat{p_i}(1-\hat{p_i})}{n}}$ and to compare upper bounds on confidence intervals. $\{S_i \; | \; \hat{p_i} + 3 \cdot SE_i < p\}$, for example. But when $\hat{p_i} = 0$, then $SE_i = 0$, and this upper bound is 0 even for the smallest subpopulations (like those where $n_i = 1$). Is there any way to express uncertainty in $p_i$ when $\hat{p_i} = 0$? Maybe through use of $p$ as a prior? **Edit:** It looks like the Jeffreys interval as described in Brown et al. is about what I'm after, though I'm not as-of-yet sure how to apply it.</code>                             | <code>0</code> |
  | <code>Do I have to install a custom ROM if I root?</code>                     | <code>What is the difference between a battery and a charged capacitor? I can see lot of similarities between capacitor and battery. In both these charges are separated and When not connected in a circuit both can have same Potential difference `V`. The only difference is that battery runs for longer time but a capacitor discharges almost instantaneously. Why this difference? What is the exact cause for the difference in the discharge times?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <code>0</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `save_only_model`: True
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: True
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step     | Training Loss | sts_dev_spearman | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:-------:|:--------:|:-------------:|:----------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1      | -1       | -             | 0.5982           | 0.6519 (+0.1115)         | 0.3749 (+0.0498)          | 0.6497 (+0.1490)     | 0.5588 (+0.1035)           |
| 0.4589  | 1000     | 0.4015        | -                | -                        | -                         | -                    | -                          |
| 0.9179  | 2000     | 0.191         | -                | -                        | -                         | -                    | -                          |
| **1.0** | **2179** | **-**         | **0.7298**       | **0.6146 (+0.0742)**     | **0.3779 (+0.0529)**      | **0.6450 (+0.1444)** | **0.5459 (+0.0905)**       |
| 1.3768  | 3000     | 0.163         | -                | -                        | -                         | -                    | -                          |
| 1.8357  | 4000     | 0.1524        | -                | -                        | -                         | -                    | -                          |
| 2.0     | 4358     | -             | 0.7312           | 0.5951 (+0.0547)         | 0.3808 (+0.0557)          | 0.6490 (+0.1484)     | 0.5416 (+0.0863)           |
| 2.2946  | 5000     | 0.1369        | -                | -                        | -                         | -                    | -                          |
| 2.7536  | 6000     | 0.1297        | -                | -                        | -                         | -                    | -                          |
| 3.0     | 6537     | -             | 0.7335           | 0.5994 (+0.0590)         | 0.3743 (+0.0492)          | 0.6500 (+0.1494)     | 0.5412 (+0.0859)           |
| -1      | -1       | -             | 0.7298           | 0.6146 (+0.0742)         | 0.3779 (+0.0529)          | 0.6450 (+0.1444)     | 0.5459 (+0.0905)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.1.0+cu118
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->