--- datasets: - imagenet-1k tags: - mae - crossmae pipeline_tag: image-classification library_name: pytorch license: cc-by-nc-4.0 --- ## CrossMAE: Rethinking Patch Dependence for Masked Autoencoders by Letian Fu*, Long Lian*, Renhao Wang, Baifeng Shi, Xudong Wang, Adam Yala†, Trevor Darrell†, Alexei A. Efros†, Ken Goldberg† at UC Berkeley and UCSF [[Paper](https://arxiv.org/abs/2401.14391)] | [[Project Page](https://crossmae.github.io/)] | [[Citation](#citation)]

This repo has the models for [CrossMAE: Rethinking Patch Dependence for Masked Autoencoders](https://arxiv.org/abs/2401.14391). Please take a look at the [GitHub repo](https://github.com/TonyLianLong/CrossMAE) to see instructions on pretraining, fine-tuning, and evaluation with these models.
ViT-Small ViT-Base ViT-Base448 ViT-Large ViT-Huge
pretrained checkpoint download download download download download
fine-tuned checkpoint download download download download download
Reference ImageNet accuracy (ours) 79.318 83.722 84.598 85.432 86.256
MAE ImageNet accuracy (baseline) 84.8 85.9
## Citation Please give us a star 🌟 on Github to support us! Please cite our work if you find our work inspiring or use our code in your work: ``` @article{ fu2025rethinking, title={Rethinking Patch Dependence for Masked Autoencoders}, author={Letian Fu and Long Lian and Renhao Wang and Baifeng Shi and XuDong Wang and Adam Yala and Trevor Darrell and Alexei A Efros and Ken Goldberg}, journal={Transactions on Machine Learning Research}, issn={2835-8856}, year={2025}, url={https://openreview.net/forum?id=JT2KMuo2BV}, note={} } ```