Update README.md
Browse files
README.md
CHANGED
@@ -1,2 +1,60 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- keras
|
6 |
+
- lstm
|
7 |
+
- spam-classification
|
8 |
+
- text-classification
|
9 |
+
- binary-classification
|
10 |
+
- email
|
11 |
+
- deep-learning
|
12 |
+
library_name: keras
|
13 |
+
pipeline_tag: text-classification
|
14 |
+
model_name: Spam Email Classifier (BiLSTM)
|
15 |
+
datasets:
|
16 |
+
- SetFit/enron_spam
|
17 |
+
---
|
18 |
+
|
19 |
+
# 📧 Spam Email Classifier using BiLSTM
|
20 |
+
|
21 |
+
This model uses a **Bidirectional LSTM (BiLSTM)** architecture built with **Keras** to classify email messages as **Spam** or **Ham**. It was trained on the [Enron Spam Dataset](https://huggingface.co/datasets/SetFit/enron_spam) using GloVe word embeddings.
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## 🧠Model Architecture
|
26 |
+
|
27 |
+
- **Tokenizer**: Keras `Tokenizer` trained on the Enron dataset
|
28 |
+
- **Embedding**: Pretrained [GloVe.6B.100d](https://nlp.stanford.edu/projects/glove/)
|
29 |
+
- **Model**: `Embedding → BiLSTM → Dropout → Dense(sigmoid)`
|
30 |
+
- **Input**: English email/message text
|
31 |
+
- **Output**: `0 = Ham`, `1 = Spam`
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
## 🧪 Example Usage
|
36 |
+
|
37 |
+
```python
|
38 |
+
from tensorflow.keras.models import load_model
|
39 |
+
from huggingface_hub import hf_hub_download
|
40 |
+
import pickle
|
41 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
42 |
+
|
43 |
+
# Load files from HF Hub
|
44 |
+
model_path = hf_hub_download("lokas/spam-emails-classifier", "model.h5")
|
45 |
+
tokenizer_path = hf_hub_download("lokas/spam-emails-classifier", "tokenizer.pkl")
|
46 |
+
|
47 |
+
# Load model and tokenizer
|
48 |
+
model = load_model(model_path)
|
49 |
+
with open(tokenizer_path, "rb") as f:
|
50 |
+
tokenizer = pickle.load(f)
|
51 |
+
|
52 |
+
# Prediction function
|
53 |
+
def predict_spam(text):
|
54 |
+
seq = tokenizer.texts_to_sequences([text])
|
55 |
+
padded = pad_sequences(seq, maxlen=50) # must match training maxlen
|
56 |
+
pred = model.predict(padded)[0][0]
|
57 |
+
return "🚫 Spam" if pred > 0.5 else "✅ Not Spam"
|
58 |
+
|
59 |
+
# Example
|
60 |
+
print(predict_spam("Win a free iPhone now!"))
|