File size: 2,952 Bytes
4f45291 b3a4c2c 4f45291 b3a4c2c 4f45291 1ab5b90 4f45291 1ab5b90 b3a4c2c f68960b b3a4c2c 4f45291 1ab5b90 b3a4c2c de65034 b3a4c2c 4f45291 1ab5b90 b602e5c 1ab5b90 b602e5c b3a4c2c ced2712 145af7c 1ab5b90 145af7c b3a4c2c 1ab5b90 88d3e1a b3a4c2c 88d3e1a b3a4c2c 88d3e1a b3a4c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: mit
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
pipeline_tag: text-generation
tags:
- chat
---
# litert-community/DeepSeek-R1-Distill-Qwen-1.5B
This model provides a few variants of
[deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) that are ready for
deployment on Android using the
[LiteRT (fka TFLite) stack](https://ai.google.dev/edge/litert) and
[MediaPipe LLM Inference API](https://ai.google.dev/edge/mediapipe/solutions/genai/llm_inference).
## Use the models
### Colab
*Disclaimer: The target deployment surface for the LiteRT models is
Android/iOS/Web and the stack has been optimized for performance on these
targets. Trying out the system in Colab is an easier way to familiarize yourself
with the LiteRT stack, with the caveat that the performance (memory and latency)
on Colab could be much worse than on a local device.*
[](https://colab.research.google.com/#fileId=https://huggingface.co/litert-community/DeepSeek-R1-Distill-Qwen-1.5B/blob/main/notebook.ipynb)
### Android
* Download and install
[the apk](https://github.com/google-ai-edge/mediapipe-samples/releases/latest/download/llm_inference-debug.apk).
* Follow the instructions in the app.
To build the demo app from source, please follow the
[instructions](https://github.com/google-ai-edge/mediapipe-samples/blob/main/examples/llm_inference/android/README.md)
from the GitHub repository.
## Performance
### Android
Note that all benchmark stats are from a Samsung S24 Ultra with
1280 KV cache size with multiple prefill signatures enabled.
<table border="1">
<tr>
<th></th>
<th>Backend</th>
<th>Prefill (tokens/sec)</th>
<th>Decode (tokens/sec)</th>
<th>Time-to-first-token (sec)</th>
<th>Memory (RSS in MB)</th>
<th>Model size (MB)</th>
</tr>
<tr>
<td>fp32 (baseline)</td>
<td>cpu</td>
<td><p style="text-align: right">39.56 tk/s</p></td>
<td><p style="text-align: right">1.43 tk/s</p></td>
<td><p style="text-align: right">19.24 s</p></td>
<td><p style="text-align: right">5,997 MB</p></td>
<td><p style="text-align: right">6,794 MB</p></td>
</tr>
<tr>
<td>dynamic_int8</td>
<td>cpu</td>
<td><p style="text-align: right">110.58 tk/s</p></td>
<td><p style="text-align: right">12.96 tk/s</p></td>
<td><p style="text-align: right">6.81 s</p></td>
<td><p style="text-align: right">3,598 MB</p></td>
<td><p style="text-align: right">1,774 MB</p></td>
</tr>
</table>
* Model Size: measured by the size of the .tflite flatbuffer (serialization
format for LiteRT models)
* Memory: indicator of peak RAM usage
* The inference on CPU is accelerated via the LiteRT
[XNNPACK](https://github.com/google/XNNPACK) delegate with 4 threads
* Benchmark is done assuming XNNPACK cache is enabled
* dynamic_int8: quantized model with int8 weights and float activations.
|