--- license: other base_model: lightblue/suzume-llama-3-8B-multilingual tags: - generated_from_trainer model-index: - name: workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top75_borda results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: lightblue/suzume-llama-3-8B-multilingual model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: false strict: false rl: orpo orpo_alpha: 0.1 remove_unused_columns: false chat_template: chatml datasets: - path: lightblue/mitsu_top75_borda type: orpo.chat_template conversation: llama-3 dataset_prepared_path: /workspace/llm_training/axolotl/llama3-multilingual-orpo/prepared_mitsu_top75_borda val_set_size: 0.02 output_dir: /workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top75_borda sequence_len: 8192 sample_packing: false pad_to_sequence_len: true use_wandb: true wandb_project: axolotl wandb_entity: peterd wandb_name: mitsu_top75_borda gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 8e-6 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 20 eval_table_size: saves_per_epoch: 1 debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> ```

# workspace/llm_training/axolotl/llama3-multilingual-orpo/output_mitsu_top75_borda This model is a fine-tuned version of [lightblue/suzume-llama-3-8B-multilingual](https://huggingface.co/lightblue/suzume-llama-3-8B-multilingual) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 7.6309 | 0.02 | 1 | 7.7104 | | 3.9307 | 0.06 | 4 | 2.3582 | | 0.1361 | 0.13 | 8 | 0.1163 | | 0.1072 | 0.19 | 12 | 0.1045 | | 0.1087 | 0.26 | 16 | 0.1007 | | 0.1109 | 0.32 | 20 | 0.0971 | | 0.1015 | 0.39 | 24 | 0.0908 | | 0.1032 | 0.45 | 28 | 0.0872 | | 0.0996 | 0.52 | 32 | 0.0968 | | 0.1107 | 0.58 | 36 | 0.0982 | | 0.1079 | 0.65 | 40 | 0.0911 | | 0.1011 | 0.71 | 44 | 0.0893 | | 0.1251 | 0.78 | 48 | 0.0866 | | 0.1008 | 0.84 | 52 | 0.0863 | | 0.0948 | 0.91 | 56 | 0.0863 | | 0.0936 | 0.97 | 60 | 0.0863 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0