lfhe commited on
Commit
90554f5
·
1 Parent(s): 972e147
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: microsoft/Phi-3-small-8k-instruct
3
  library_name: peft
4
  ---
5
 
 
1
  ---
2
+ base_model: microsoft/Phi-3-mini-128k-instruct
3
  library_name: peft
4
  ---
5
 
adapter_config.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
- "base_model_name_or_path": "microsoft/Phi-3-small-8k-instruct",
5
  "bias": "none",
6
  "corda_config": null,
7
  "eva_config": null,
@@ -13,24 +13,24 @@
13
  "layers_pattern": null,
14
  "layers_to_transform": null,
15
  "loftq_config": {},
16
- "lora_alpha": 64,
17
  "lora_bias": false,
18
  "lora_dropout": 0.35,
19
  "megatron_config": null,
20
  "megatron_core": "megatron.core",
21
  "modules_to_save": null,
22
  "peft_type": "LORA",
23
- "r": 64,
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
- "query_key_value",
28
- "dense",
29
- "up_proj",
30
  "down_proj"
31
  ],
32
  "task_type": "CAUSAL_LM",
33
  "trainable_token_indices": null,
34
  "use_dora": false,
35
- "use_rslora": true
36
  }
 
1
  {
2
  "alpha_pattern": {},
3
  "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
5
  "bias": "none",
6
  "corda_config": null,
7
  "eva_config": null,
 
13
  "layers_pattern": null,
14
  "layers_to_transform": null,
15
  "loftq_config": {},
16
+ "lora_alpha": 192,
17
  "lora_bias": false,
18
  "lora_dropout": 0.35,
19
  "megatron_config": null,
20
  "megatron_core": "megatron.core",
21
  "modules_to_save": null,
22
  "peft_type": "LORA",
23
+ "r": 32,
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
+ "qkv_proj",
28
+ "gate_up_proj",
29
+ "o_proj",
30
  "down_proj"
31
  ],
32
  "task_type": "CAUSAL_LM",
33
  "trainable_token_indices": null,
34
  "use_dora": false,
35
+ "use_rslora": false
36
  }
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:274b7e04804bbcdbb6634a8ef80b07b0dfa9923c5786ce29e96399b6f2c20fe0
3
- size 570460344
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ab6835131e800a567348c582cb51098b81dabe47e26af93f58ff51e4d2917d7
3
+ size 201361312
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
cl100k_base.tiktoken DELETED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json CHANGED
@@ -1,5 +1,11 @@
1
  {
2
- "bos_token": "<|endoftext|>",
 
 
 
 
 
 
3
  "eos_token": {
4
  "content": "<|end|>",
5
  "lstrip": false,
@@ -7,5 +13,18 @@
7
  "rstrip": false,
8
  "single_word": false
9
  },
10
- "pad_token": "<|endoftext|>"
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  }
 
1
  {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
  "eos_token": {
10
  "content": "<|end|>",
11
  "lstrip": false,
 
13
  "rstrip": false,
14
  "single_word": false
15
  },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
  }
tokenization_phi3_small.py DELETED
@@ -1,338 +0,0 @@
1
- # Adapted from https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/tokenization_qwen.py
2
- import os
3
- from typing import Collection, List, Optional, Dict, Set, Tuple, Union
4
-
5
- from functools import cached_property
6
-
7
- import base64
8
- import requests
9
-
10
- from transformers import PreTrainedTokenizer, AddedToken, AutoConfig
11
- from transformers.models.auto.tokenization_auto import get_tokenizer_config
12
- import tiktoken
13
-
14
-
15
- """
16
- This tokenizer is almost identical to tiktoken.get_encoding("cl100k_base")
17
- with a few additional special tokens to support the ChatML format.
18
-
19
- TODO(bapatra): Right now, I do not save the special tokens to the vocab file.
20
- Maybe in the future, that would be useful? Can add that support later.
21
-
22
- """
23
-
24
- def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
25
- with open(tiktoken_bpe_file, "rb") as f:
26
- contents = f.read()
27
- return {
28
- base64.b64decode(token): int(rank)
29
- for token, rank in (line.split() for line in contents.splitlines() if line)
30
- }
31
-
32
- # On the megatron codebase, we pad vocabularies to ensure matrix multiplication is fast.
33
- # this in turn causes some indices to be empty. We account for these empty indices by adding
34
- # dummy tokens to the tokenizer.
35
-
36
- EFFECTIVE_PADDED_VOCAB_SIZE = 100352
37
- ACTUAL_VOCAB_SIZE = 100276
38
-
39
-
40
- DUMMY_TOKENS = {
41
- f"<|dummy_id_{11 + offset}|>": 100276 + offset
42
- for offset in range(1, EFFECTIVE_PADDED_VOCAB_SIZE - ACTUAL_VOCAB_SIZE)
43
- }
44
-
45
- SPECIAL_TOKENS = {
46
- # tiktoken.get_encoding("cl100k_base")._special_tokens
47
- '<|endoftext|>': 100257,
48
- '<|fim_prefix|>': 100258,
49
- '<|fim_middle|>': 100259,
50
- '<|fim_suffix|>': 100260,
51
- # Special tokens for post-training
52
- "<|system|>": 100261,
53
- "<|user|>": 100262,
54
- "<|assistant|>": 100263,
55
- # Dummy unused tokens
56
- "<|dummy_id_0|>": 100264,
57
- "<|dummy_id_1|>": 100265,
58
- # Special tokens for post-training continued
59
- "<|end|>": 100266,
60
- # Some dummy tokens, so that tokenization is contiguous and does not cause issues
61
- # Note that the 100256th token of tiktoken.get_encoding("cl100k_base") does not
62
- # actually map to anything. So we use a dummy token here.
63
- "<|dummy_id_2|>": 100256,
64
- # Likewise, tokens from 100267 to 100275 are also unused
65
- "<|dummy_id_3|>": 100267,
66
- "<|dummy_id_4|>": 100268,
67
- "<|dummy_id_5|>": 100269,
68
- "<|dummy_id_6|>": 100270,
69
- "<|dummy_id_7|>": 100271,
70
- "<|dummy_id_8|>": 100272,
71
- "<|dummy_id_9|>": 100273,
72
- "<|dummy_id_10|>": 100274,
73
- "<|dummy_id_11|>": 100275,
74
- # The final end of prompt token
75
- # (unused, but present as a part of tiktoken.get_encoding("cl100k_base")._special_tokens)
76
- '<|endofprompt|>': 100276,
77
- # Dummy tokens to account for padding of the tokenizer
78
- # We pad to ensure tensor cores are used for vocab multiplication
79
- **DUMMY_TOKENS
80
- }
81
-
82
- class Phi3SmallTokenizer(PreTrainedTokenizer):
83
- vocab_files_names = {
84
- "vocab_file": "cl100k_base.tiktoken"
85
- }
86
-
87
- model_input_names: List[str] = ["input_ids", "attention_mask"]
88
- padding_side = "left"
89
-
90
- def __init__(
91
- self,
92
- vocab_file: Optional[str] = None,
93
- errors: str = "replace",
94
- **kwargs
95
- ) -> None:
96
- # PreTrainedTokenizer's init calls _add_tokens, which in turn checks
97
- # if the token is present in `self.special_tokens``. Hence instantiating it here.
98
- # The way Qwen gets around this is by checking against SPECIAL_TOKENS
99
- # But I think it's better to check against the objects own `special_tokens`
100
- # in case we eventually want to allow the tokenizer to have special tokens.
101
- self.special_tokens = SPECIAL_TOKENS
102
-
103
- super().__init__(**kwargs)
104
- self.errors = errors
105
-
106
- try:
107
- base = tiktoken.get_encoding("cl100k_base")
108
- # This deals with the scenario where user has restricted internet access
109
- # and thus fails to download the tokenizer file from https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken
110
- # It is assumed that user should be able to access files on huggingface hub.
111
- except requests.RequestException:
112
- import hashlib
113
- from transformers.utils import cached_file
114
- cached_tokenizer_path = cached_file(
115
- "microsoft/Phi-3-small-8k-instruct",
116
- "cl100k_base.tiktoken",
117
- _raise_exceptions_for_gated_repo=False,
118
- _raise_exceptions_for_missing_entries=False,
119
- _raise_exceptions_for_connection_errors=False
120
- )
121
- tiktoken_cache_dir = os.path.dirname(cached_tokenizer_path)
122
- tiktoken_cache_path = os.path.join(
123
- tiktoken_cache_dir,
124
- hashlib.sha1("https://openaipublic.blob.core.windows.net/encodings/cl100k_base.tiktoken".encode()).hexdigest()
125
- )
126
- if not os.path.exists(tiktoken_cache_path):
127
- os.rename(cached_tokenizer_path, tiktoken_cache_path)
128
- os.environ["TIKTOKEN_CACHE_DIR"] = tiktoken_cache_dir
129
- base = tiktoken.get_encoding("cl100k_base")
130
-
131
- if vocab_file is None:
132
- self.mergeable_ranks: Dict[bytes, int] = base._mergeable_ranks
133
- else:
134
- self.mergeable_ranks = _load_tiktoken_bpe(vocab_file)
135
-
136
- self.pat_str = base._pat_str
137
-
138
- enc = tiktoken.Encoding(
139
- name="phi3small",
140
- pat_str=self.pat_str,
141
- mergeable_ranks=self.mergeable_ranks,
142
- special_tokens=self.special_tokens,
143
- )
144
- self.tokenizer = enc
145
-
146
- self.decoder: Dict[int, bytes] = {
147
- v: k for k, v in self.mergeable_ranks.items()
148
- }
149
- self.decoder.update({v: k for k, v in self.special_tokens.items()})
150
-
151
- self.eod_id = self.tokenizer.eot_token
152
- self._eos_token = self._convert_id_to_token(self.eod_id)
153
-
154
- # Setting the bos_token to be the same as the eos_token
155
- # Note that this is **not** the correct thing to do, and is done
156
- # just so that some of the downstream libraries do not break.
157
- self._bos_token = self._eos_token
158
-
159
- # Assign the special tokens to class variables
160
- self.system_id = self.special_tokens["<|system|>"]
161
- self.user_id = self.special_tokens["<|user|>"]
162
- self.assistant_id = self.special_tokens["<|assistant|>"]
163
- self.end_id = self.special_tokens["<|end|>"]
164
-
165
- @cached_property
166
- def dummy_token_indices(self) -> List[int]:
167
- # There are some additional special tokens in the cl100k_base tokenizer
168
- # that we do not use. Hence, we also consider them to be dummy tokens.
169
- additional_tokens = [
170
- "<|fim_prefix|>",
171
- "<|fim_middle|>",
172
- "<|fim_suffix|>",
173
- "<|endofprompt|>"
174
- ]
175
- dummy_token_indices = [index for token, index in self.special_tokens.items() if "dummy_id" in token]
176
- dummy_token_indices.extend([self.special_tokens[token] for token in additional_tokens])
177
- return sorted(dummy_token_indices)
178
-
179
- def __getstate__(self):
180
- state = self.__dict__.copy()
181
- del state["tokenizer"]
182
- return state
183
-
184
- def __setstate__(self, state):
185
- self.__dict__ = state
186
- enc = tiktoken.Encoding(
187
- name="cl100k_im",
188
- pat_str=self.pat_str,
189
- mergeable_ranks=self.mergeable_ranks,
190
- special_tokens=self.special_tokens,
191
- )
192
- self.tokenizer = enc
193
-
194
- def __len__(self):
195
- return self.tokenizer.n_vocab
196
-
197
- @classmethod
198
- def from_pretrained(
199
- cls,
200
- pretrained_model_name_or_path: Union[str, os.PathLike],
201
- *init_inputs,
202
- **kwargs,
203
- ):
204
- cls_kwargs = kwargs
205
- # First try to load from the tokenization config if it exists
206
- tokenization_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs)
207
- if tokenization_config:
208
- cls_kwargs = {
209
- **tokenization_config,
210
- **cls_kwargs
211
- }
212
- else:
213
- config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True)
214
- cls_kwargs["model_max_length"] = config.max_position_embeddings
215
- return cls(**cls_kwargs)
216
-
217
- def get_vocab(self) -> Dict[Union[str, bytes], int]:
218
- return {**self.mergeable_ranks, **self.special_tokens}
219
-
220
- def convert_tokens_to_ids(
221
- self,
222
- tokens: Union[bytes, str, List[Union[bytes, str]]]
223
- ) -> Union[int, List[int]]:
224
- ids = []
225
- if isinstance(tokens, (str, bytes)):
226
- if tokens in self.special_tokens:
227
- return self.special_tokens[tokens]
228
- else:
229
- return self.mergeable_ranks.get(tokens)
230
- ids: List[int] = []
231
- for token in tokens:
232
- ids.append(self.convert_tokens_to_ids(token))
233
- return ids
234
-
235
- def _add_tokens(
236
- self,
237
- new_tokens: Union[List[str], List[AddedToken]],
238
- special_tokens: bool = False,
239
- ) -> int:
240
- if not special_tokens and new_tokens:
241
- raise ValueError("Only special tokens can be added to this tokenizer")
242
- for token in new_tokens:
243
- surface_form = token.content if isinstance(token, AddedToken) else token
244
- if surface_form not in self.special_tokens:
245
- raise ValueError(
246
- "For now, we do not support unknown special tokens\n"
247
- "In the future, if there is a need for this, we can add special tokens to the tokenizer\n"
248
- "starting from rank 100261 - 100263 and then 100266 - 100275.\n"
249
- "And finally, we can re-construct the enc object back\n"
250
- )
251
- return 0
252
-
253
- def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
254
- file_path = os.path.join(save_directory, "cl100k_base.tiktoken")
255
- with open(file_path, "w") as f:
256
- for token, rank in self.mergeable_ranks.items():
257
- line = base64.b64encode(token).decode("utf-8") + " " + str(rank) + "\n"
258
- f.write(line)
259
- return (file_path,)
260
-
261
- def tokenize(
262
- self,
263
- text: str,
264
- allowed_special: Union[Set, str] = "all",
265
- disallowed_special: Union[Collection, str] = (),
266
- **kwargs
267
- ) -> List[Union[bytes, str]]:
268
- tokens: List[Union[bytes, str]] = []
269
- for token_id in self.tokenizer.encode(
270
- text, allowed_special=allowed_special, disallowed_special=disallowed_special
271
- ):
272
- tokens.append(self.decoder[token_id])
273
- return tokens
274
-
275
- def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
276
- """
277
- Converts a sequence of tokens in a single string.
278
- """
279
- text = ""
280
- temp = b""
281
- for t in tokens:
282
- if isinstance(t, str):
283
- if temp:
284
- text += temp.decode("utf-8", errors=self.errors)
285
- temp = b""
286
- text += t
287
- elif isinstance(t, bytes):
288
- temp += t
289
- else:
290
- raise TypeError("token should only be of type types or str")
291
- if temp:
292
- text += temp.decode("utf-8", errors=self.errors)
293
- return text
294
-
295
- @property
296
- def vocab_size(self):
297
- return self.tokenizer.n_vocab
298
-
299
- @property
300
- def eos_token_id(self) -> int:
301
- return self.eod_id
302
-
303
- def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
304
- """Converts an id to a token, special tokens included"""
305
- if index in self.decoder:
306
- return self.decoder[index]
307
- raise ValueError("unknown ids")
308
-
309
- def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
310
- """Converts a token to an id using the vocab, special tokens included"""
311
- if token in self.special_tokens:
312
- return self.special_tokens[token]
313
- if token in self.mergeable_ranks:
314
- return self.mergeable_ranks[token]
315
- raise ValueError("unknown token")
316
-
317
- def _tokenize(self, text: str, **kwargs):
318
- """
319
- Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
320
- vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
321
- Do NOT take care of added tokens.
322
- """
323
- raise NotImplementedError
324
-
325
- def _decode(
326
- self,
327
- token_ids: Union[int, List[int]],
328
- skip_special_tokens: bool = False,
329
- errors: str = None,
330
- **kwargs,
331
- ) -> str:
332
- if isinstance(token_ids, int):
333
- token_ids = [token_ids]
334
- if skip_special_tokens:
335
- token_ids = [i for i in token_ids if i < self.eod_id]
336
- return self.tokenizer.decode(token_ids, errors=errors or self.errors)
337
-
338
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2923f15e986925cfb5e017bc9acbe2e24add5218d2b44558e1283fe76bb6df04
3
+ size 3620658
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json CHANGED
@@ -1,25 +1,133 @@
1
  {
2
- "_commit_hash": null,
3
- "_from_auto": true,
4
- "added_tokens_decoder": {},
5
- "auto_map": {
6
- "AutoTokenizer": [
7
- "tokenization_phi3_small.Phi3SmallTokenizer",
8
- null
9
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  },
11
- "bos_token": "<|endoftext|>",
12
- "cache_dir": null,
13
- "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
14
- "clean_up_tokenization_spaces": true,
15
  "eos_token": "<|end|>",
16
  "extra_special_tokens": {},
17
- "model_max_length": 8192,
 
18
  "pad_token": "<|endoftext|>",
19
  "padding_side": "right",
20
- "revision": "main",
21
  "split_special_tokens": false,
22
- "token": null,
23
- "tokenizer_class": "Phi3SmallTokenizer",
24
- "trust_remote_code": true
25
  }
 
1
  {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
  },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
+ "clean_up_tokenization_spaces": false,
 
122
  "eos_token": "<|end|>",
123
  "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 131072,
126
  "pad_token": "<|endoftext|>",
127
  "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
  "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
  }