Manh Lai
commited on
Commit
·
2262653
1
Parent(s):
897662d
update to generate onnx tokenizer
Browse files- convert_to_onnx.py +80 -32
- tokenizer.json +0 -0
convert_to_onnx.py
CHANGED
@@ -1,54 +1,102 @@
|
|
1 |
from pathlib import Path
|
2 |
import onnx
|
3 |
import shutil
|
|
|
4 |
from onnxconverter_common import float16
|
5 |
from onnxruntime.quantization import quantize_dynamic, QuantType
|
6 |
-
|
7 |
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
8 |
from transformers import AutoTokenizer
|
|
|
9 |
|
10 |
-
#
|
11 |
model_name = "dangvantuan/vietnamese-embedding"
|
12 |
output_dir = Path("onnx")
|
13 |
output_dir.mkdir(parents=True, exist_ok=True)
|
14 |
|
15 |
-
#
|
16 |
-
# Step 1: Export
|
17 |
-
#
|
18 |
-
print("Exporting
|
19 |
model = ORTModelForFeatureExtraction.from_pretrained(model_name, export=True)
|
20 |
model.save_pretrained(output_dir)
|
21 |
|
22 |
-
#
|
23 |
-
tokenizer
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
# Step
|
32 |
-
#
|
33 |
-
print("Quantizing to INT8
|
34 |
quantize_dynamic(
|
35 |
-
model_input=
|
36 |
-
model_output=
|
37 |
weight_type=QuantType.QInt8,
|
38 |
)
|
39 |
|
40 |
-
#
|
41 |
-
# Step
|
42 |
-
#
|
43 |
-
print("
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
for json_file in json_files:
|
48 |
-
shutil.move(str(json_file), str(parent_dir / json_file.name))
|
49 |
|
50 |
print("✅ Conversion complete!")
|
51 |
-
print(f"
|
52 |
-
print(f"
|
53 |
-
print(f"Tokenizer files moved to: {[f.name for f in json_files]}")
|
54 |
-
print(f"ONNX files remain in: {output_dir}")
|
|
|
1 |
from pathlib import Path
|
2 |
import onnx
|
3 |
import shutil
|
4 |
+
import json
|
5 |
from onnxconverter_common import float16
|
6 |
from onnxruntime.quantization import quantize_dynamic, QuantType
|
|
|
7 |
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
8 |
from transformers import AutoTokenizer
|
9 |
+
from tokenizers import Tokenizer
|
10 |
|
11 |
+
# Configuration
|
12 |
model_name = "dangvantuan/vietnamese-embedding"
|
13 |
output_dir = Path("onnx")
|
14 |
output_dir.mkdir(parents=True, exist_ok=True)
|
15 |
|
16 |
+
# --------------------------------------------------
|
17 |
+
# Step 1: Export model to ONNX (FP32)
|
18 |
+
# --------------------------------------------------
|
19 |
+
print("Exporting FP32 model...")
|
20 |
model = ORTModelForFeatureExtraction.from_pretrained(model_name, export=True)
|
21 |
model.save_pretrained(output_dir)
|
22 |
|
23 |
+
# --------------------------------------------------
|
24 |
+
# Step 2: Convert tokenizer to JSON format
|
25 |
+
# --------------------------------------------------
|
26 |
+
print("Processing tokenizer...")
|
27 |
+
try:
|
28 |
+
# First try to get fast tokenizer directly
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
30 |
+
tokenizer.save_pretrained(output_dir, legacy_format=False)
|
31 |
+
print("✓ Saved modern tokenizer.json")
|
32 |
+
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Couldn't create fast tokenizer directly: {e}")
|
35 |
+
print("Attempting manual conversion...")
|
36 |
+
|
37 |
+
# Load slow tokenizer
|
38 |
+
slow_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
39 |
+
|
40 |
+
# Save original files first
|
41 |
+
slow_tokenizer.save_pretrained(output_dir)
|
42 |
+
|
43 |
+
# Convert to fast tokenizer format
|
44 |
+
try:
|
45 |
+
# Create Tokenizer object from the slow tokenizer
|
46 |
+
tokenizer_json = {
|
47 |
+
"version": "1.0",
|
48 |
+
"truncation": None,
|
49 |
+
"padding": None,
|
50 |
+
"added_tokens": [],
|
51 |
+
"normalizer": {
|
52 |
+
"type": "Sequence",
|
53 |
+
"normalizers": []
|
54 |
+
},
|
55 |
+
"pre_tokenizer": {
|
56 |
+
"type": "Whitespace"
|
57 |
+
},
|
58 |
+
"post_processor": None,
|
59 |
+
"decoder": None,
|
60 |
+
"model": {
|
61 |
+
"type": "WordPiece",
|
62 |
+
"unk_token": slow_tokenizer.unk_token,
|
63 |
+
"sep_token": slow_tokenizer.sep_token,
|
64 |
+
"cls_token": slow_tokenizer.cls_token,
|
65 |
+
"pad_token": slow_tokenizer.pad_token,
|
66 |
+
"mask_token": slow_tokenizer.mask_token,
|
67 |
+
"vocab": slow_tokenizer.get_vocab(),
|
68 |
+
"max_input_chars_per_word": 100
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
# Save as tokenizer.json
|
73 |
+
with open(output_dir / "tokenizer.json", "w", encoding="utf-8") as f:
|
74 |
+
json.dump(tokenizer_json, f, ensure_ascii=False, indent=2)
|
75 |
+
|
76 |
+
print("✓ Manually created tokenizer.json")
|
77 |
+
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Failed to create tokenizer.json: {e}")
|
80 |
+
print("Falling back to original tokenizer files")
|
81 |
|
82 |
+
# --------------------------------------------------
|
83 |
+
# Step 3: Quantize model to INT8
|
84 |
+
# --------------------------------------------------
|
85 |
+
print("Quantizing to INT8...")
|
86 |
quantize_dynamic(
|
87 |
+
model_input=output_dir / "model.onnx",
|
88 |
+
model_output=output_dir / "model_quantized.onnx",
|
89 |
weight_type=QuantType.QInt8,
|
90 |
)
|
91 |
|
92 |
+
# --------------------------------------------------
|
93 |
+
# Step 4: Clean up file organization
|
94 |
+
# --------------------------------------------------
|
95 |
+
print("Organizing files...")
|
96 |
+
# Move all JSON files to parent directory
|
97 |
+
for json_file in output_dir.glob("*.json"):
|
98 |
+
shutil.move(str(json_file), str(Path(".") / json_file.name))
|
|
|
|
|
99 |
|
100 |
print("✅ Conversion complete!")
|
101 |
+
print(f"ONNX models saved in: {output_dir}")
|
102 |
+
print(f"Tokenizer files moved to project root")
|
|
|
|
tokenizer.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|