--- language: ja tags: - audio - automatic-speech-recognition license: apache-2.0 --- # Kotoba-Whisper: kotoba-whisper-v1.0 for Whisper cpp This repository contains the model weights for [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below. ## Usage Kotoba-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original sequential long-form transcription algorithm. Steps for getting started: 1. Clone the Whisper.cpp repository: ``` git clone https://github.com/ggerganov/whisper.cpp.git cd whisper.cpp ``` 2. Download the GGML weights for `kotoba-tech/kotoba-whisper-v1.0`: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0.bin -P ./models ``` 3. Run inference using the provided sample audio: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/sample_ja_speech.wav make -j && ./main -m models/ggml-kotoba-whisper-v1.0.bin -f sample_ja_speech.wav --output-file transcription --output-json ``` Note that it runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use ffmpeg like this: ``` ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav ``` ### Benchmark We measure the inference speed with four different Japanese speech audio on MacBook Pro with the following spec: - Apple M2 Pro - 32GB - 14-inch, 2023 - OS Sonoma Version 14.4.1 (23E224) | audio file | audio duration (min)| inference time (sec) | |--|---------------------|-------------| |audio 1 | 50.3 | 581 | |audio 2 | 5.6 | 41 | |audio 3 | 4.9 | 30 | |audio 4 | 5.6 | 35 | ### Quantized Model To use the quantized model, download the quantized GGML weights: ```bash wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0-q5_0.bin -P ./models ``` Run inference on the sample audio: ```bash make -j && ./main -m models/ggml-kotoba-whisper-v1.0-q5_0.bin -f sample_ja_speech.wav --output-file transcription.quantized --output-json ``` Note that the benchmark results are almost identical to the raw non-quantized model weight. ## Model Details For more information about the kotoba-whisper-v1.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0).