File size: 2,616 Bytes
6f03869 fcd126e 6f03869 fcd126e 6f03869 fcd126e 6f03869 fcd126e bfb854c 649f58a 6f03869 bfb854c c5bbccf 6f8e50e c5bbccf fcd126e 6f03869 fcd126e 6f03869 fcd126e 6f03869 649f58a 6f03869 c5bbccf fcd126e 6f03869 5431ad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
---
language: ja
tags:
- audio
- automatic-speech-recognition
license: apache-2.0
---
# Kotoba-Whisper: kotoba-whisper-v1.0 for Whisper cpp
This repository contains the model weights for [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)
converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages
such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below.
## Usage
Kotoba-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
sequential long-form transcription algorithm.
Steps for getting started:
1. Clone the Whisper.cpp repository:
```
git clone https://github.com/ggerganov/whisper.cpp.git
cd whisper.cpp
```
2. Download the GGML weights for `kotoba-tech/kotoba-whisper-v1.0`:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0.bin -P ./models
```
3. Run inference using the provided sample audio:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/sample_ja_speech.wav
make -j && ./main -m models/ggml-kotoba-whisper-v1.0.bin -f sample_ja_speech.wav --output-file transcription --output-json
```
Note that it runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use ffmpeg like this:
```
ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
```
### Benchmark
We measure the inference speed with four different Japanese speech audio on MacBook Pro with the following spec:
- Apple M2 Pro
- 32GB
- 14-inch, 2023
- OS Sonoma Version 14.4.1 (23E224)
| audio file | audio duration (min)| inference time (sec) |
|--|---------------------|-------------|
|audio 1 | 50.3 | 581 |
|audio 2 | 5.6 | 41 |
|audio 3 | 4.9 | 30 |
|audio 4 | 5.6 | 35 |
### Quantized Model
To use the quantized model, download the quantized GGML weights:
```bash
wget https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml/resolve/main/ggml-kotoba-whisper-v1.0-q5_0.bin -P ./models
```
Run inference on the sample audio:
```bash
make -j && ./main -m models/ggml-kotoba-whisper-v1.0-q5_0.bin -f sample_ja_speech.wav --output-file transcription.quantized --output-json
```
Note that the benchmark results are almost identical to the raw non-quantized model weight.
## Model Details
For more information about the kotoba-whisper-v1.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0).
|