Update README.md
Browse files
README.md
CHANGED
@@ -122,7 +122,7 @@ has additional complexity and memory consumption compared to the single end2end
|
|
122 |
Following table shows the mean inference time on a single RTX 4090 (VRAM 24 GB) in second averaged over 10 trials on audio sample with different durations, along with the parameter size.
|
123 |
|
124 |
|
125 |
-
| model | Param. (M) |
|
126 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------:|------:|------:|------:|------:|
|
127 |
| [**kotoba-tech/kotoba-whisper-bilingual-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 756 | 0.041 | 0.111 | 0.214 | 1.077 |
|
128 |
| [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)) | 4056 | 0.173 | 0.247 | 0.352 | 1.772 |
|
|
|
122 |
Following table shows the mean inference time on a single RTX 4090 (VRAM 24 GB) in second averaged over 10 trials on audio sample with different durations, along with the parameter size.
|
123 |
|
124 |
|
125 |
+
| model | Param. (M) | 10 (sec.) | 30 (sec.) | 60 (sec.) | 300 (sec.) |
|
126 |
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------:|------:|------:|------:|------:|
|
127 |
| [**kotoba-tech/kotoba-whisper-bilingual-v1.0**](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 756 | 0.041 | 0.111 | 0.214 | 1.077 |
|
128 |
| [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)) | 4056 | 0.173 | 0.247 | 0.352 | 1.772 |
|