karthik-2905 commited on
Commit
a78154a
Β·
verified Β·
1 Parent(s): 9df004c

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ diffusion_process.png filter=lfs diff=lfs merge=lfs -text
37
+ diffusion_results.png filter=lfs diff=lfs merge=lfs -text
38
+ training_metrics.png filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/Diffusion Models-checkpoint.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Diffusion Models.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
README.md ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Diffusion Models - Complete DDPM Implementation
3
+ emoji: 🌊
4
+ colorFrom: purple
5
+ colorTo: pink
6
+ sdk: pytorch
7
+ app_file: "Diffusion Models.ipynb"
8
+ pinned: false
9
+ license: mit
10
+ tags:
11
+ - deep-learning
12
+ - generative-ai
13
+ - pytorch
14
+ - diffusion-models
15
+ - ddpm
16
+ - denoising
17
+ - generative-modeling
18
+ - computer-vision
19
+ - unsupervised-learning
20
+ datasets:
21
+ - synthetic-2d-data
22
+ ---
23
+
24
+ # Diffusion Models: Complete DDPM Implementation
25
+
26
+ A comprehensive PyTorch implementation of Denoising Diffusion Probabilistic Models (DDPM) with detailed mathematical foundations and educational content.
27
+
28
+ ## Model Description
29
+
30
+ This repository contains a complete implementation of Diffusion Models (DDPM) trained on 2D synthetic datasets. The model learns to generate new data points by mastering the art of noise removal through a reverse diffusion process. This implementation serves as both a working model and an educational resource for understanding the mathematics and implementation of diffusion models.
31
+
32
+ ### Architecture Details
33
+
34
+ - **Model Type**: Denoising Diffusion Probabilistic Model (DDPM)
35
+ - **Framework**: PyTorch
36
+ - **Input**: 2D point coordinates
37
+ - **Diffusion Steps**: 1000 timesteps
38
+ - **Hidden Dimensions**: 256 units with SiLU activations
39
+ - **Time Embedding**: 64-dimensional rich representations
40
+ - **Total Parameters**: ~130K
41
+ - **Model Size**: 1.8MB
42
+
43
+ ### Key Components
44
+
45
+ 1. **Noise Predictor Network**: Neural network that predicts noise Ξ΅_ΞΈ(x_t, t)
46
+ 2. **Forward Diffusion Process**: Gradually adds Gaussian noise over T steps
47
+ 3. **Reverse Diffusion Process**: Iteratively removes noise to generate samples
48
+ 4. **Time Embedding Module**: Converts timesteps to rich feature representations
49
+
50
+ ## Training Details
51
+
52
+ - **Dataset**: Synthetic 2D point clusters
53
+ - **Diffusion Steps**: 1000
54
+ - **Beta Schedule**: Linear (0.0001 to 0.02)
55
+ - **Optimizer**: AdamW with cosine annealing
56
+ - **Learning Rate**: 0.001
57
+ - **Training Epochs**: 2000
58
+ - **Batch Processing**: Dynamic batching for efficient training
59
+
60
+ ## Mathematical Foundation
61
+
62
+ ### Forward Process
63
+ The forward process adds noise according to:
64
+ ```
65
+ q(x_t | x_{t-1}) = N(x_t; √(1-β_t) x_{t-1}, β_t I)
66
+ ```
67
+
68
+ With direct sampling:
69
+ ```
70
+ x_t = √ᾱ_t x_0 + √(1-ᾱ_t) Ρ
71
+ ```
72
+
73
+ ### Reverse Process
74
+ The model learns to reverse noise:
75
+ ```
76
+ p_ΞΈ(x_{t-1} | x_t) = N(x_{t-1}; ΞΌ_ΞΈ(x_t, t), Ξ£_ΞΈ(x_t, t))
77
+ ```
78
+
79
+ ### Loss Function
80
+ Trained by minimizing noise prediction error:
81
+ ```
82
+ L = E[||Ξ΅ - Ξ΅_ΞΈ(x_t, t)||Β²]
83
+ ```
84
+
85
+ ## Model Performance
86
+
87
+ ### Training Metrics
88
+ - **Final Training Loss**: Converged to stable low values
89
+ - **Training Time**: ~30 minutes on GPU
90
+ - **Memory Usage**: <500MB GPU memory
91
+ - **Convergence**: Stable training without mode collapse
92
+
93
+ ### Capabilities
94
+ - βœ… High-quality 2D point generation
95
+ - βœ… Smooth interpolation in data space
96
+ - βœ… Stable training without adversarial dynamics
97
+ - βœ… Mathematically grounded approach
98
+ - βœ… Excellent sample diversity
99
+
100
+ ## Usage
101
+
102
+ ### Quick Start
103
+
104
+ ```python
105
+ import torch
106
+ import torch.nn as nn
107
+ import matplotlib.pyplot as plt
108
+
109
+ # Load the model components (full implementation in notebook)
110
+ class NoisePredictor(nn.Module):
111
+ def __init__(self, data_dim=2, hidden_dim=256, time_embed_dim=64):
112
+ super(NoisePredictor, self).__init__()
113
+ # ... (complete implementation in notebook)
114
+
115
+ def forward(self, x, t):
116
+ # ... (complete implementation in notebook)
117
+ return noise_prediction
118
+
119
+ class DiffusionModel:
120
+ def __init__(self, T=1000, beta_start=0.0001, beta_end=0.02):
121
+ # ... (complete implementation in notebook)
122
+
123
+ def sample(self, n_samples=100):
124
+ # Generate new samples from pure noise
125
+ # ... (complete implementation in notebook)
126
+ return generated_samples
127
+
128
+ # Load trained model
129
+ model = DiffusionModel()
130
+ # Load weights: model.model.load_state_dict(torch.load('diffusion_model_complete.pth'))
131
+
132
+ # Generate new samples
133
+ samples = model.sample(n_samples=100)
134
+ plt.scatter(samples[:, 0], samples[:, 1])
135
+ plt.title("Generated 2D Points")
136
+ plt.show()
137
+ ```
138
+
139
+ ### Advanced Usage
140
+
141
+ ```python
142
+ # Visualize the diffusion process
143
+ model.visualize_diffusion_process()
144
+
145
+ # Monitor training progress
146
+ model.plot_training_curves()
147
+
148
+ # Sample with different parameters
149
+ high_quality_samples = model.sample(n_samples=500, guidance_scale=1.0)
150
+ ```
151
+
152
+ ## Visualizations Available
153
+
154
+ 1. **Diffusion Process**: Step-by-step noise addition and removal
155
+ 2. **Training Curves**: Loss evolution and learning dynamics
156
+ 3. **Generated Samples**: Comparison with original data distribution
157
+ 4. **Sampling Process**: Real-time generation visualization
158
+ 5. **Parameter Analysis**: Beta schedule and noise analysis
159
+
160
+ ## Files and Outputs
161
+
162
+ - `Diffusion Models.ipynb`: Complete implementation with educational content
163
+ - `diffusion_model_complete.pth`: Trained model weights
164
+ - `diffusion_process.png`: Visualization of forward and reverse processes
165
+ - `diffusion_results.png`: Generated samples and quality assessment
166
+ - `training_metrics.png`: Comprehensive training analytics
167
+ - `diffusion_logs/`: Detailed training and sampling logs
168
+
169
+ ## Applications
170
+
171
+ This diffusion model implementation can be adapted for:
172
+
173
+ - **Image Generation**: Extend to pixel-based image synthesis
174
+ - **Audio Synthesis**: Apply to waveform or spectrogram generation
175
+ - **3D Point Clouds**: Generate 3D shapes and objects
176
+ - **Time Series**: Financial data, sensor readings, weather patterns
177
+ - **Scientific Data**: Molecular structures, particle physics
178
+ - **Data Augmentation**: Synthetic training data creation
179
+
180
+ ## Educational Value
181
+
182
+ This implementation is designed as a learning resource featuring:
183
+
184
+ - **Complete Mathematical Derivations**: From first principles to implementation
185
+ - **Step-by-Step Explanations**: Every component explained in detail
186
+ - **Visual Learning**: Rich plots and animations for understanding
187
+ - **Progressive Complexity**: Build understanding gradually
188
+ - **Practical Implementation**: Real working code with best practices
189
+
190
+ ## Research Applications
191
+
192
+ The model demonstrates key concepts in:
193
+
194
+ - **Generative Modeling**: Alternative to GANs and VAEs
195
+ - **Probability Theory**: Markov chains and stochastic processes
196
+ - **Neural Network Architecture**: Time conditioning and embeddings
197
+ - **Optimization**: Stable training of generative models
198
+ - **Sampling Methods**: DDPM and potential DDIM extensions
199
+
200
+ ## Comparison with Other Generative Models
201
+
202
+ ### Advantages over GANs
203
+ - βœ… Stable training (no adversarial dynamics)
204
+ - βœ… No mode collapse
205
+ - βœ… Mathematical foundation
206
+ - βœ… High-quality samples
207
+
208
+ ### Advantages over VAEs
209
+ - βœ… Higher sample quality
210
+ - βœ… No posterior collapse
211
+ - βœ… Better likelihood estimates
212
+ - βœ… Flexible architectures
213
+
214
+ ### Trade-offs
215
+ - ⚠️ Slower sampling (requires multiple steps)
216
+ - ⚠️ More computationally intensive
217
+ - ⚠️ Memory requirements for long sequences
218
+
219
+ ## Citation
220
+
221
+ If you use this implementation in your research or projects, please cite:
222
+
223
+ ```bibtex
224
+ @misc{ddpm_implementation_2024,
225
+ title={Complete DDPM Implementation: Educational Diffusion Models},
226
+ author={Gruhesh Kurra},
227
+ year={2024},
228
+ url={https://huggingface.co/karthik-2905/DiffusionModels}
229
+ }
230
+ ```
231
+
232
+ ## Future Extensions
233
+
234
+ Planned improvements and extensions:
235
+
236
+ - πŸ”„ **DDIM Implementation**: Faster sampling with deterministic steps
237
+ - 🎨 **Conditional Generation**: Text-guided or class-conditional generation
238
+ - πŸ“Š **Alternative Schedules**: Cosine and sigmoid beta schedules
239
+ - πŸ–ΌοΈ **Image Diffusion**: Extension to CIFAR-10 and other image datasets
240
+ - 🎡 **Audio Applications**: Waveform and spectrogram generation
241
+ - 🧬 **Scientific Applications**: Molecular and protein structure generation
242
+
243
+ ## License
244
+
245
+ This project is licensed under the MIT License - see the LICENSE file for details.
246
+
247
+ ## Additional Resources
248
+
249
+ - **GitHub Repository**: [DiffusionModels](https://github.com/GruheshKurra/DiffusionModels)
250
+ - **Detailed Notebook**: Complete implementation with educational content
251
+ - **Training Logs**: Comprehensive metrics and analysis
252
+
253
+ ## Model Card Authors
254
+
255
+ **Gruhesh Kurra** - Implementation, documentation, and educational content
256
+
257
+ ---
258
+
259
+ **Tags**: diffusion-models, generative-ai, pytorch, ddpm, deep-learning, denoising
260
+
261
+ **Model Card Last Updated**: December 2024
README_HF.md ADDED
@@ -0,0 +1,261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Diffusion Models - Complete DDPM Implementation
3
+ emoji: 🌊
4
+ colorFrom: purple
5
+ colorTo: pink
6
+ sdk: pytorch
7
+ app_file: "Diffusion Models.ipynb"
8
+ pinned: false
9
+ license: mit
10
+ tags:
11
+ - deep-learning
12
+ - generative-ai
13
+ - pytorch
14
+ - diffusion-models
15
+ - ddpm
16
+ - denoising
17
+ - generative-modeling
18
+ - computer-vision
19
+ - unsupervised-learning
20
+ datasets:
21
+ - synthetic-2d-data
22
+ ---
23
+
24
+ # Diffusion Models: Complete DDPM Implementation
25
+
26
+ A comprehensive PyTorch implementation of Denoising Diffusion Probabilistic Models (DDPM) with detailed mathematical foundations and educational content.
27
+
28
+ ## Model Description
29
+
30
+ This repository contains a complete implementation of Diffusion Models (DDPM) trained on 2D synthetic datasets. The model learns to generate new data points by mastering the art of noise removal through a reverse diffusion process. This implementation serves as both a working model and an educational resource for understanding the mathematics and implementation of diffusion models.
31
+
32
+ ### Architecture Details
33
+
34
+ - **Model Type**: Denoising Diffusion Probabilistic Model (DDPM)
35
+ - **Framework**: PyTorch
36
+ - **Input**: 2D point coordinates
37
+ - **Diffusion Steps**: 1000 timesteps
38
+ - **Hidden Dimensions**: 256 units with SiLU activations
39
+ - **Time Embedding**: 64-dimensional rich representations
40
+ - **Total Parameters**: ~130K
41
+ - **Model Size**: 1.8MB
42
+
43
+ ### Key Components
44
+
45
+ 1. **Noise Predictor Network**: Neural network that predicts noise Ξ΅_ΞΈ(x_t, t)
46
+ 2. **Forward Diffusion Process**: Gradually adds Gaussian noise over T steps
47
+ 3. **Reverse Diffusion Process**: Iteratively removes noise to generate samples
48
+ 4. **Time Embedding Module**: Converts timesteps to rich feature representations
49
+
50
+ ## Training Details
51
+
52
+ - **Dataset**: Synthetic 2D point clusters
53
+ - **Diffusion Steps**: 1000
54
+ - **Beta Schedule**: Linear (0.0001 to 0.02)
55
+ - **Optimizer**: AdamW with cosine annealing
56
+ - **Learning Rate**: 0.001
57
+ - **Training Epochs**: 2000
58
+ - **Batch Processing**: Dynamic batching for efficient training
59
+
60
+ ## Mathematical Foundation
61
+
62
+ ### Forward Process
63
+ The forward process adds noise according to:
64
+ ```
65
+ q(x_t | x_{t-1}) = N(x_t; √(1-β_t) x_{t-1}, β_t I)
66
+ ```
67
+
68
+ With direct sampling:
69
+ ```
70
+ x_t = √ᾱ_t x_0 + √(1-ᾱ_t) Ρ
71
+ ```
72
+
73
+ ### Reverse Process
74
+ The model learns to reverse noise:
75
+ ```
76
+ p_ΞΈ(x_{t-1} | x_t) = N(x_{t-1}; ΞΌ_ΞΈ(x_t, t), Ξ£_ΞΈ(x_t, t))
77
+ ```
78
+
79
+ ### Loss Function
80
+ Trained by minimizing noise prediction error:
81
+ ```
82
+ L = E[||Ξ΅ - Ξ΅_ΞΈ(x_t, t)||Β²]
83
+ ```
84
+
85
+ ## Model Performance
86
+
87
+ ### Training Metrics
88
+ - **Final Training Loss**: Converged to stable low values
89
+ - **Training Time**: ~30 minutes on GPU
90
+ - **Memory Usage**: <500MB GPU memory
91
+ - **Convergence**: Stable training without mode collapse
92
+
93
+ ### Capabilities
94
+ - βœ… High-quality 2D point generation
95
+ - βœ… Smooth interpolation in data space
96
+ - βœ… Stable training without adversarial dynamics
97
+ - βœ… Mathematically grounded approach
98
+ - βœ… Excellent sample diversity
99
+
100
+ ## Usage
101
+
102
+ ### Quick Start
103
+
104
+ ```python
105
+ import torch
106
+ import torch.nn as nn
107
+ import matplotlib.pyplot as plt
108
+
109
+ # Load the model components (full implementation in notebook)
110
+ class NoisePredictor(nn.Module):
111
+ def __init__(self, data_dim=2, hidden_dim=256, time_embed_dim=64):
112
+ super(NoisePredictor, self).__init__()
113
+ # ... (complete implementation in notebook)
114
+
115
+ def forward(self, x, t):
116
+ # ... (complete implementation in notebook)
117
+ return noise_prediction
118
+
119
+ class DiffusionModel:
120
+ def __init__(self, T=1000, beta_start=0.0001, beta_end=0.02):
121
+ # ... (complete implementation in notebook)
122
+
123
+ def sample(self, n_samples=100):
124
+ # Generate new samples from pure noise
125
+ # ... (complete implementation in notebook)
126
+ return generated_samples
127
+
128
+ # Load trained model
129
+ model = DiffusionModel()
130
+ # Load weights: model.model.load_state_dict(torch.load('diffusion_model_complete.pth'))
131
+
132
+ # Generate new samples
133
+ samples = model.sample(n_samples=100)
134
+ plt.scatter(samples[:, 0], samples[:, 1])
135
+ plt.title("Generated 2D Points")
136
+ plt.show()
137
+ ```
138
+
139
+ ### Advanced Usage
140
+
141
+ ```python
142
+ # Visualize the diffusion process
143
+ model.visualize_diffusion_process()
144
+
145
+ # Monitor training progress
146
+ model.plot_training_curves()
147
+
148
+ # Sample with different parameters
149
+ high_quality_samples = model.sample(n_samples=500, guidance_scale=1.0)
150
+ ```
151
+
152
+ ## Visualizations Available
153
+
154
+ 1. **Diffusion Process**: Step-by-step noise addition and removal
155
+ 2. **Training Curves**: Loss evolution and learning dynamics
156
+ 3. **Generated Samples**: Comparison with original data distribution
157
+ 4. **Sampling Process**: Real-time generation visualization
158
+ 5. **Parameter Analysis**: Beta schedule and noise analysis
159
+
160
+ ## Files and Outputs
161
+
162
+ - `Diffusion Models.ipynb`: Complete implementation with educational content
163
+ - `diffusion_model_complete.pth`: Trained model weights
164
+ - `diffusion_process.png`: Visualization of forward and reverse processes
165
+ - `diffusion_results.png`: Generated samples and quality assessment
166
+ - `training_metrics.png`: Comprehensive training analytics
167
+ - `diffusion_logs/`: Detailed training and sampling logs
168
+
169
+ ## Applications
170
+
171
+ This diffusion model implementation can be adapted for:
172
+
173
+ - **Image Generation**: Extend to pixel-based image synthesis
174
+ - **Audio Synthesis**: Apply to waveform or spectrogram generation
175
+ - **3D Point Clouds**: Generate 3D shapes and objects
176
+ - **Time Series**: Financial data, sensor readings, weather patterns
177
+ - **Scientific Data**: Molecular structures, particle physics
178
+ - **Data Augmentation**: Synthetic training data creation
179
+
180
+ ## Educational Value
181
+
182
+ This implementation is designed as a learning resource featuring:
183
+
184
+ - **Complete Mathematical Derivations**: From first principles to implementation
185
+ - **Step-by-Step Explanations**: Every component explained in detail
186
+ - **Visual Learning**: Rich plots and animations for understanding
187
+ - **Progressive Complexity**: Build understanding gradually
188
+ - **Practical Implementation**: Real working code with best practices
189
+
190
+ ## Research Applications
191
+
192
+ The model demonstrates key concepts in:
193
+
194
+ - **Generative Modeling**: Alternative to GANs and VAEs
195
+ - **Probability Theory**: Markov chains and stochastic processes
196
+ - **Neural Network Architecture**: Time conditioning and embeddings
197
+ - **Optimization**: Stable training of generative models
198
+ - **Sampling Methods**: DDPM and potential DDIM extensions
199
+
200
+ ## Comparison with Other Generative Models
201
+
202
+ ### Advantages over GANs
203
+ - βœ… Stable training (no adversarial dynamics)
204
+ - βœ… No mode collapse
205
+ - βœ… Mathematical foundation
206
+ - βœ… High-quality samples
207
+
208
+ ### Advantages over VAEs
209
+ - βœ… Higher sample quality
210
+ - βœ… No posterior collapse
211
+ - βœ… Better likelihood estimates
212
+ - βœ… Flexible architectures
213
+
214
+ ### Trade-offs
215
+ - ⚠️ Slower sampling (requires multiple steps)
216
+ - ⚠️ More computationally intensive
217
+ - ⚠️ Memory requirements for long sequences
218
+
219
+ ## Citation
220
+
221
+ If you use this implementation in your research or projects, please cite:
222
+
223
+ ```bibtex
224
+ @misc{ddpm_implementation_2024,
225
+ title={Complete DDPM Implementation: Educational Diffusion Models},
226
+ author={Gruhesh Kurra},
227
+ year={2024},
228
+ url={https://huggingface.co/karthik-2905/DiffusionModels}
229
+ }
230
+ ```
231
+
232
+ ## Future Extensions
233
+
234
+ Planned improvements and extensions:
235
+
236
+ - πŸ”„ **DDIM Implementation**: Faster sampling with deterministic steps
237
+ - 🎨 **Conditional Generation**: Text-guided or class-conditional generation
238
+ - πŸ“Š **Alternative Schedules**: Cosine and sigmoid beta schedules
239
+ - πŸ–ΌοΈ **Image Diffusion**: Extension to CIFAR-10 and other image datasets
240
+ - 🎡 **Audio Applications**: Waveform and spectrogram generation
241
+ - 🧬 **Scientific Applications**: Molecular and protein structure generation
242
+
243
+ ## License
244
+
245
+ This project is licensed under the MIT License - see the LICENSE file for details.
246
+
247
+ ## Additional Resources
248
+
249
+ - **GitHub Repository**: [DiffusionModels](https://github.com/GruheshKurra/DiffusionModels)
250
+ - **Detailed Notebook**: Complete implementation with educational content
251
+ - **Training Logs**: Comprehensive metrics and analysis
252
+
253
+ ## Model Card Authors
254
+
255
+ **Gruhesh Kurra** - Implementation, documentation, and educational content
256
+
257
+ ---
258
+
259
+ **Tags**: diffusion-models, generative-ai, pytorch, ddpm, deep-learning, denoising
260
+
261
+ **Model Card Last Updated**: December 2024
diffusion_logs/sampling_log.json ADDED
@@ -0,0 +1 @@
 
 
1
+ []
diffusion_logs/training_log.json ADDED
The diff for this file is too large to render. See raw diff
 
diffusion_model_complete.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5657fbdbd7bcb9b250d0680980cea7f710bb5ce36b31a1ebbc6794818455f47
3
+ size 1923075
diffusion_process.png ADDED

Git LFS Details

  • SHA256: ca78414484d3c1f35d774a3a0a71a1eead1caaf722322732a0b93b701888eded
  • Pointer size: 131 Bytes
  • Size of remote file: 632 kB
diffusion_results.png ADDED

Git LFS Details

  • SHA256: 9a9f445278f5c1f1a81c7543eafb907d1715d1dbc5d0f1ac5357a46c487e7e00
  • Pointer size: 131 Bytes
  • Size of remote file: 697 kB
training_metrics.png ADDED

Git LFS Details

  • SHA256: 630162f117af6fc80f0d792626911904f3f0633a3a416f7a5240be5c35e7e22d
  • Pointer size: 131 Bytes
  • Size of remote file: 248 kB