Upload evaluate_speech.py
Browse files- examples/evaluate_speech.py +435 -0
examples/evaluate_speech.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
from urllib.request import urlopen
|
3 |
+
import soundfile
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset, Audio
|
6 |
+
import numpy as np
|
7 |
+
from transformers import AutoModel, AutoProcessor, BatchFeature
|
8 |
+
from tqdm import tqdm
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
from datetime import datetime
|
13 |
+
from whisper_normalizer.english import EnglishTextNormalizer
|
14 |
+
from whisper_normalizer.basic import BasicTextNormalizer
|
15 |
+
import sacrebleu
|
16 |
+
from jiwer import cer, wer
|
17 |
+
from torch.utils.data import Dataset, DataLoader
|
18 |
+
import soundfile as sf
|
19 |
+
import re
|
20 |
+
|
21 |
+
normalizer = {
|
22 |
+
"en_us" : EnglishTextNormalizer(),
|
23 |
+
"ko_kr" : BasicTextNormalizer()
|
24 |
+
}
|
25 |
+
|
26 |
+
# λͺ¨λΈ λ° νλ‘μΈμ λ‘λ
|
27 |
+
model_id = "junnei/gemma-3-4b-it-speech"
|
28 |
+
revision = "v1.0"
|
29 |
+
|
30 |
+
model = AutoModel.from_pretrained(
|
31 |
+
model_id, device_map="auto", revision = revision, trust_remote_code=True
|
32 |
+
).eval()
|
33 |
+
|
34 |
+
processor = AutoProcessor.from_pretrained(
|
35 |
+
model_id, revision = revision, trust_remote_code=True
|
36 |
+
)
|
37 |
+
|
38 |
+
# κ²°κ³Ό μ μ₯ λλ ν 리 μμ±
|
39 |
+
results_dir = f"evaluation_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
|
40 |
+
os.makedirs(results_dir, exist_ok=True)
|
41 |
+
|
42 |
+
|
43 |
+
INSTRUCTION = {
|
44 |
+
"ast": "Translate the audio to {0}.",
|
45 |
+
"asr": "Transcribe the audio clip into text.",
|
46 |
+
}
|
47 |
+
|
48 |
+
class CoVoSTDataset(Dataset):
|
49 |
+
def __init__(self, processor, data_dir, ast=False,
|
50 |
+
lang=("en_ko", "Korean")):
|
51 |
+
self.data = load_dataset("junnei/covost2",
|
52 |
+
lang[0],
|
53 |
+
data_dir=data_dir,
|
54 |
+
split='test',
|
55 |
+
trust_remote_code=True
|
56 |
+
)
|
57 |
+
|
58 |
+
original_size = len(self.data)
|
59 |
+
self.data = self.data.cast_column("audio", Audio(decode=False))
|
60 |
+
|
61 |
+
def identify_corrupted_files(example):
|
62 |
+
try:
|
63 |
+
# λμ½λ© μλ
|
64 |
+
sf.read(example["audio"]["path"])
|
65 |
+
if example['translation'] == "" or example['sentence'] == "":
|
66 |
+
return False
|
67 |
+
return True
|
68 |
+
except Exception:
|
69 |
+
return False
|
70 |
+
|
71 |
+
self.data = self.data.filter(identify_corrupted_files, num_proc=16)
|
72 |
+
validated_size = len(self.data)
|
73 |
+
self.data = self.data.cast_column("audio", Audio(sampling_rate = 16000, decode=True))
|
74 |
+
|
75 |
+
self.lang = lang[0]
|
76 |
+
self.ast = ast
|
77 |
+
|
78 |
+
print(f"- {self.lang}: {('AST' if self.ast else 'ASR')}")
|
79 |
+
print(f"μλ³Έ λ°μ΄ν° κ°μ: {original_size}")
|
80 |
+
print(f"μλ¬ λ°μ΄ν° κ°μ: {original_size - validated_size}")
|
81 |
+
print(f"νν°λ§ λΉμ¨: {validated_size/original_size:.2%}")
|
82 |
+
|
83 |
+
self.processor = processor
|
84 |
+
self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
|
85 |
+
|
86 |
+
def __len__(self):
|
87 |
+
return len(self.data)
|
88 |
+
|
89 |
+
def __getitem__(self, idx):
|
90 |
+
data = self.data[idx]
|
91 |
+
user_message = {
|
92 |
+
'role': 'user',
|
93 |
+
'content': '<start_of_audio>' + self.instruction,
|
94 |
+
}
|
95 |
+
prompt = self.processor.tokenizer.apply_chat_template(
|
96 |
+
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
|
97 |
+
)
|
98 |
+
inputs = self.processor(text=prompt, audio=[data["audio"]["array"]], add_special_tokens=False, return_tensors='pt')
|
99 |
+
sentence = data['sentence'].replace('"', '')
|
100 |
+
answer = f"{data['translation'] if self.ast else sentence}"
|
101 |
+
|
102 |
+
return {
|
103 |
+
'input_ids': inputs.input_ids,
|
104 |
+
'attention_mask': inputs.attention_mask,
|
105 |
+
'token_type_ids': inputs.token_type_ids,
|
106 |
+
'input_modes': inputs.input_modes,
|
107 |
+
'input_audio_embeds': inputs.input_audio_embeds,
|
108 |
+
'audio_embed_sizes': inputs.audio_embed_sizes,
|
109 |
+
'sentence': sentence,
|
110 |
+
'answer': answer,
|
111 |
+
}
|
112 |
+
|
113 |
+
def select(self, indices):
|
114 |
+
self.data = self.data.select(indices)
|
115 |
+
return self
|
116 |
+
|
117 |
+
def pad_sequence(sequences, padding_side='right', padding_value=0):
|
118 |
+
"""
|
119 |
+
Pad a list of sequences to the same length.
|
120 |
+
sequences: list of tensors in [seq_len, *] shape
|
121 |
+
"""
|
122 |
+
assert padding_side in ['right', 'left']
|
123 |
+
max_size = sequences[0].size()
|
124 |
+
trailing_dims = max_size[1:]
|
125 |
+
max_len = max(len(seq) for seq in sequences)
|
126 |
+
batch_size = len(sequences)
|
127 |
+
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
|
128 |
+
for i, seq in enumerate(sequences):
|
129 |
+
length = seq.size(0)
|
130 |
+
if padding_side == 'right':
|
131 |
+
output.data[i, :length] = seq
|
132 |
+
else:
|
133 |
+
output.data[i, -length:] = seq
|
134 |
+
return output
|
135 |
+
|
136 |
+
def cat_with_pad(tensors, dim, padding_value=0):
|
137 |
+
"""
|
138 |
+
cat along dim, while pad to max for all other dims
|
139 |
+
"""
|
140 |
+
ndim = tensors[0].dim()
|
141 |
+
assert all(
|
142 |
+
t.dim() == ndim for t in tensors[1:]
|
143 |
+
), 'All tensors must have the same number of dimensions'
|
144 |
+
|
145 |
+
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
|
146 |
+
out_size[dim] = sum(t.shape[dim] for t in tensors)
|
147 |
+
output = tensors[0].new_full(out_size, padding_value)
|
148 |
+
|
149 |
+
index = 0
|
150 |
+
for t in tensors:
|
151 |
+
# Create a slice list where every dimension except dim is full slice
|
152 |
+
slices = [slice(0, t.shape[d]) for d in range(ndim)]
|
153 |
+
# Update only the concat dimension slice
|
154 |
+
slices[dim] = slice(index, index + t.shape[dim])
|
155 |
+
|
156 |
+
output[slices] = t
|
157 |
+
index += t.shape[dim]
|
158 |
+
|
159 |
+
return output
|
160 |
+
|
161 |
+
def covost_collate_fn(batch):
|
162 |
+
input_ids_list = []
|
163 |
+
input_audio_embeds_list = []
|
164 |
+
audio_embed_sizes_list = []
|
165 |
+
audio_attention_mask_list = []
|
166 |
+
input_modes_list = []
|
167 |
+
sentence_list = []
|
168 |
+
answer_list = []
|
169 |
+
for inputs in batch:
|
170 |
+
input_ids_list.append(inputs['input_ids'][0])
|
171 |
+
input_audio_embeds_list.append(inputs['input_audio_embeds'])
|
172 |
+
audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
|
173 |
+
audio_attention_mask_list.append(
|
174 |
+
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
|
175 |
+
)
|
176 |
+
input_modes_list.append(inputs['input_modes'])
|
177 |
+
sentence_list.append(inputs['sentence'])
|
178 |
+
answer_list.append(inputs['answer'])
|
179 |
+
|
180 |
+
try:
|
181 |
+
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
|
182 |
+
audio_attention_mask = (
|
183 |
+
pad_sequence(audio_attention_mask_list, padding_side='right', padding_value=False)
|
184 |
+
if len(audio_attention_mask_list) > 1
|
185 |
+
else None
|
186 |
+
)
|
187 |
+
except Exception as e:
|
188 |
+
print(e)
|
189 |
+
print(input_ids_list)
|
190 |
+
print(audio_attention_mask)
|
191 |
+
raise
|
192 |
+
attention_mask = (input_ids != 0).long()
|
193 |
+
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
|
194 |
+
audio_embed_sizes = torch.cat(audio_embed_sizes_list)
|
195 |
+
input_modes = torch.cat(input_modes_list)
|
196 |
+
|
197 |
+
return BatchFeature(
|
198 |
+
{
|
199 |
+
'input_ids': input_ids,
|
200 |
+
'attention_mask': attention_mask,
|
201 |
+
'input_audio_embeds': input_audio_embeds,
|
202 |
+
'audio_embed_sizes': audio_embed_sizes,
|
203 |
+
'audio_attention_mask': audio_attention_mask,
|
204 |
+
'input_modes': input_modes,
|
205 |
+
'sentence': sentence_list,
|
206 |
+
'answer': answer_list,
|
207 |
+
}
|
208 |
+
)
|
209 |
+
|
210 |
+
def save_results(results, task, source_lang, target_lang=None, sample_idx=None):
|
211 |
+
"""κ²°κ³Όλ₯Ό JSON νμΌλ‘ μ μ₯"""
|
212 |
+
filename = f"{task}_{source_lang}"
|
213 |
+
if target_lang:
|
214 |
+
filename += f"_to_{target_lang}"
|
215 |
+
if sample_idx is not None:
|
216 |
+
filename += f"_sample_{sample_idx}"
|
217 |
+
|
218 |
+
filepath = os.path.join(results_dir, f"{filename}.json")
|
219 |
+
|
220 |
+
# κ²°κ³Όμ νμμ€ν¬ν μΆκ°
|
221 |
+
results["timestamp"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
222 |
+
|
223 |
+
with open(filepath, 'w', encoding='utf-8') as f:
|
224 |
+
json.dump(results, f, ensure_ascii=False, indent=2)
|
225 |
+
|
226 |
+
print(f"κ²°κ³Όκ° {filepath}μ μ μ₯λμμ΅λλ€.")
|
227 |
+
return filepath
|
228 |
+
|
229 |
+
def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size = 32, is_asr=True):
|
230 |
+
"""ASR(μλ μμ± μΈμ) μ±λ₯ νκ°"""
|
231 |
+
task_type = "asr" if is_asr else "translation"
|
232 |
+
eval_lang = source_lang if is_asr else target_lang
|
233 |
+
eval_normalizer = normalizer[eval_lang]
|
234 |
+
sample_results = []
|
235 |
+
|
236 |
+
# μν μ μ²λ¦¬
|
237 |
+
if num_samples > 0 and num_samples < len(dataset):
|
238 |
+
indices = np.random.choice(len(dataset), num_samples, replace=False)
|
239 |
+
dataset = dataset.select(indices)
|
240 |
+
|
241 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=covost_collate_fn)
|
242 |
+
|
243 |
+
evaluated_samples = {}
|
244 |
+
|
245 |
+
# λ°°μΉ λ¨μλ‘ μ²λ¦¬
|
246 |
+
for batch_idx, batch in enumerate(tqdm(dataloader)):
|
247 |
+
batch_sentences = batch.pop("sentence")
|
248 |
+
batch_references = batch.pop("answer")
|
249 |
+
|
250 |
+
# GPUλ‘ μ΄λ
|
251 |
+
if torch.cuda.is_available():
|
252 |
+
batch = {k: v.to("cuda") for k, v in batch.items()}
|
253 |
+
|
254 |
+
# λ°°μΉ μΆλ‘
|
255 |
+
with torch.inference_mode():
|
256 |
+
generate_ids = model.generate(**batch, max_new_tokens=256, do_sample=False)
|
257 |
+
|
258 |
+
input_lengths = batch['input_ids'].shape[1]
|
259 |
+
generate_ids = generate_ids[:, input_lengths:]
|
260 |
+
|
261 |
+
# λμ½λ©
|
262 |
+
batch_predictions = processor.batch_decode(
|
263 |
+
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
264 |
+
)
|
265 |
+
|
266 |
+
# κ²°κ³Ό μ μ₯
|
267 |
+
for i, (sentence, reference, prediction) in enumerate(zip(batch_sentences, batch_references, batch_predictions)):
|
268 |
+
idx = batch_idx * batch_size + i
|
269 |
+
sample_result = {
|
270 |
+
"id": idx,
|
271 |
+
"sentence": sentence,
|
272 |
+
"reference": reference,
|
273 |
+
"prediction": prediction
|
274 |
+
}
|
275 |
+
sample_results.append(sample_result)
|
276 |
+
|
277 |
+
# 10λ°°μΉλ§λ€ μ€κ° κ²°κ³Ό μ μ₯
|
278 |
+
if (batch_idx + 1) % 10 == 0:
|
279 |
+
temp_results = []
|
280 |
+
|
281 |
+
# λͺ¨λ μνμ λν΄ μ²λ¦¬
|
282 |
+
for item in sample_results:
|
283 |
+
sample_id = item["id"]
|
284 |
+
|
285 |
+
# μ΄λ―Έ νκ°λ μνμ νκ° κ²°κ³Όλ₯Ό μ¬μ¬μ©
|
286 |
+
if sample_id in evaluated_samples:
|
287 |
+
temp_item = item.copy()
|
288 |
+
temp_item.update(evaluated_samples[sample_id])
|
289 |
+
temp_results.append(temp_item)
|
290 |
+
else:
|
291 |
+
# μμ§ νκ°λμ§ μμ μνμ μλ‘ νκ°
|
292 |
+
temp_item = item.copy()
|
293 |
+
try:
|
294 |
+
ref = eval_normalizer(item["reference"])
|
295 |
+
pred = eval_normalizer(item["prediction"])
|
296 |
+
|
297 |
+
# BLEU, WER/CER κ³μ°
|
298 |
+
utt_bleu = sacrebleu.sentence_bleu(pred, [ref]).score
|
299 |
+
utt_cer = round(cer(re.sub(r"\s+", "", ref), re.sub(r"\s+", "", pred)) * 100, 2)
|
300 |
+
utt_wer = round(wer(ref, pred) * 100, 2)
|
301 |
+
|
302 |
+
metrics = {
|
303 |
+
"bleu": utt_bleu,
|
304 |
+
"cer": utt_cer,
|
305 |
+
"wer": utt_wer
|
306 |
+
}
|
307 |
+
|
308 |
+
# νκ° κ²°κ³Ό μ μ₯
|
309 |
+
evaluated_samples[sample_id] = metrics
|
310 |
+
temp_item.update(metrics)
|
311 |
+
except Exception as e:
|
312 |
+
print(f"Error evaluating sample {sample_id}: {e}")
|
313 |
+
# μ€λ₯ λ°μ μ κΈ°λ³Έκ° μ€μ
|
314 |
+
metrics = {
|
315 |
+
"bleu": 0,
|
316 |
+
"cer": 100,
|
317 |
+
"wer": 100,
|
318 |
+
"error": str(e)
|
319 |
+
}
|
320 |
+
evaluated_samples[sample_id] = metrics
|
321 |
+
temp_item.update(metrics)
|
322 |
+
|
323 |
+
temp_results.append(temp_item)
|
324 |
+
|
325 |
+
partial_results = {
|
326 |
+
"task": task_type,
|
327 |
+
"source_lang": source_lang,
|
328 |
+
"target_lang": target_lang,
|
329 |
+
"num_samples": len(temp_results),
|
330 |
+
"sample_results": temp_results
|
331 |
+
}
|
332 |
+
save_results(partial_results, task_type, source_lang, target_lang)
|
333 |
+
|
334 |
+
for item in sample_results:
|
335 |
+
ref = eval_normalizer(item["reference"])
|
336 |
+
pred = eval_normalizer(item["prediction"])
|
337 |
+
|
338 |
+
# BLEU, WER/CER κ³μ°
|
339 |
+
utt_bleu = sacrebleu.sentence_bleu(pred, [ref]).score
|
340 |
+
utt_cer = round(cer(re.sub(r"\s+", "", ref), re.sub(r"\s+", "", pred)) * 100, 2)
|
341 |
+
utt_wer = round(wer(ref, pred) * 100, 2)
|
342 |
+
|
343 |
+
item.update({
|
344 |
+
"bleu": utt_bleu,
|
345 |
+
"cer": utt_cer,
|
346 |
+
"wer": utt_wer
|
347 |
+
})
|
348 |
+
|
349 |
+
avg_bleu = sum(item["bleu"] for item in sample_results) / len(sample_results)
|
350 |
+
avg_cer = sum(item["cer"] for item in sample_results) / len(sample_results)
|
351 |
+
avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
|
352 |
+
|
353 |
+
results = {
|
354 |
+
"task": task_type,
|
355 |
+
"source_lang": source_lang,
|
356 |
+
"target_lang": target_lang,
|
357 |
+
"num_samples": len(sample_results),
|
358 |
+
"metrics": {
|
359 |
+
"bleu": avg_bleu,
|
360 |
+
"cer": avg_cer,
|
361 |
+
"wer": avg_wer
|
362 |
+
},
|
363 |
+
"sample_results": sample_results
|
364 |
+
}
|
365 |
+
|
366 |
+
# μ΅μ’
κ²°κ³Ό μ μ₯
|
367 |
+
save_results(results, task_type, source_lang, target_lang)
|
368 |
+
return results
|
369 |
+
|
370 |
+
# λ©μΈ μ€ν μ½λ
|
371 |
+
if __name__ == "__main__":
|
372 |
+
# νκ°ν μΈμ΄ λͺ©λ‘ (μμ€ μΈμ΄)
|
373 |
+
source_languages = [
|
374 |
+
("en_us", "English"), # μμ΄ (λ―Έκ΅)
|
375 |
+
#("ko_kr", "Korean"),
|
376 |
+
]
|
377 |
+
|
378 |
+
# λ²μ λμ μΈμ΄ λͺ©λ‘ (μ½λ, μ΄λ¦)
|
379 |
+
target_languages = [
|
380 |
+
("ko_kr", "Korean"),
|
381 |
+
#("en_us", "English"),
|
382 |
+
]
|
383 |
+
|
384 |
+
data_dir = {
|
385 |
+
"en_us" : "/workspace/CommonVoice/EN",
|
386 |
+
#"ko_kr" : "/workspace/CommonVoice/ko",
|
387 |
+
}
|
388 |
+
|
389 |
+
# μν μ μ€μ (-1μ μ 체 λ°μ΄ν°μ
μ¬μ©)
|
390 |
+
num_samples = -1
|
391 |
+
batch_size = 16
|
392 |
+
|
393 |
+
# λͺ¨λ μμ€ μΈμ΄μ λν΄ ASR νκ°
|
394 |
+
for source_lang, target_lang in zip(source_languages, target_languages):
|
395 |
+
print(f"\n===== {source_lang[0]} ASR νκ° μμ =====")
|
396 |
+
|
397 |
+
# λ°μ΄ν°μ
λ‘λ
|
398 |
+
covost = CoVoSTDataset(processor, data_dir[source_lang[0]], ast=False, lang=(f"{source_lang[0].split('_')[0]}_{target_lang[0].split('_')[0]}", f"{target_lang[1]}"))
|
399 |
+
|
400 |
+
# ASR νκ°
|
401 |
+
asr_results = evaluate_task(covost, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = True)
|
402 |
+
|
403 |
+
print(f"\n=== {source_lang[0]} ASR κ²°κ³Ό ===")
|
404 |
+
print(f"BLEU: {asr_results.get('metrics', {}).get('bleu', 'N/A')}")
|
405 |
+
print(f"WER: {asr_results.get('metrics', {}).get('wer', 'N/A')}")
|
406 |
+
print(f"CER: {asr_results.get('metrics', {}).get('cer', 'N/A')}")
|
407 |
+
|
408 |
+
try:
|
409 |
+
print(f"\n===== {source_lang[0]} -> {target_lang[0]} λ²μ νκ° μμ =====")
|
410 |
+
|
411 |
+
# λ°μ΄ν°μ
λ‘λ
|
412 |
+
covost = CoVoSTDataset(processor, data_dir[source_lang[0]], ast=True, lang=(f"{source_lang[0].split('_')[0]}_{target_lang[0].split('_')[0]}", f"{target_lang[1]}"))
|
413 |
+
|
414 |
+
# λ²μ νκ°
|
415 |
+
translation_results = evaluate_task(covost, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = False)
|
416 |
+
|
417 |
+
print(f"\n=== {source_lang[0]} -> {target_lang[0]} λ²μ κ²°κ³Ό ===")
|
418 |
+
print(f"BLEU: {translation_results.get('metrics', {}).get('bleu', 'N/A')}")
|
419 |
+
print(f"WER: {translation_results.get('metrics', {}).get('wer', 'N/A')}")
|
420 |
+
print(f"CER: {translation_results.get('metrics', {}).get('cer', 'N/A')}")
|
421 |
+
|
422 |
+
except Exception as e:
|
423 |
+
error_info = {
|
424 |
+
"error": str(e),
|
425 |
+
"source_lang": source_lang[0],
|
426 |
+
"target_lang": target_lang[0],
|
427 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
428 |
+
}
|
429 |
+
error_file = os.path.join(results_dir, f"error_translation_{source_lang[0]}_to_{target_lang[0]}_global.json")
|
430 |
+
with open(error_file, 'w') as f:
|
431 |
+
json.dump(error_info, f, indent=2)
|
432 |
+
print(f"{source_lang[0]} -> {target_lang[0]} λ²μ νκ° μ€ μ€λ₯ λ°μ: {str(e)}")
|
433 |
+
continue
|
434 |
+
|
435 |
+
print(f"\nλͺ¨λ νκ°κ° μλ£λμμ΅λλ€. κ²°κ³Όλ {results_dir} λλ ν 리μ μ μ₯λμμ΅λλ€.")
|