|
import copy |
|
from collections.abc import Callable |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache, HybridCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_torchdynamo_compiling, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.utils.deprecation import deprecate_kwarg |
|
from transformers import AutoModel, AutoModelForCausalLM |
|
|
|
from transformers.models.gemma3.modeling_gemma3 import Gemma3CausalLMOutputWithPast, Gemma3PreTrainedModel, Gemma3MultiModalProjector |
|
|
|
from transformers import AutoConfig, AutoModelForCausalLM |
|
|
|
from .configuration_gemma3mm import Gemma3MMConfig |
|
from .processing_gemma3mm import InputMode |
|
from .speech_conformer_encoder import ConformerEncoder |
|
|
|
logger = logging.get_logger(__name__) |
|
_CONFIG_FOR_DOC = "Gemma3MMConfig" |
|
|
|
@dataclass |
|
class Gemma3MMCausalLMOutputWithPast(Gemma3CausalLMOutputWithPast): |
|
""" |
|
Multimodal version of `Gemma3CausalLMOutputWithPast`. |
|
Adds audio-specific hidden states. |
|
|
|
Args: |
|
audio_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_size, sequence_length, hidden_size)`. |
|
Audio hidden states produced by the audio encoder. |
|
""" |
|
audio_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
GEMMA3_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`Gemma3Config`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
|
|
GEMMA3_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance, see our |
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache); |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, |
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer |
|
the complete sequence length. |
|
""" |
|
|
|
@add_start_docstrings( |
|
"The bare Gemma3 Model outputting raw hidden-states without any specific head on top.", |
|
GEMMA3_START_DOCSTRING, |
|
) |
|
class Gemma3MMPreTrainedModel(Gemma3PreTrainedModel): |
|
config_class = Gemma3MMConfig |
|
|
|
@add_start_docstrings( |
|
"""The GEMMA3 model which consists of a vision backbone and a language model.""", |
|
GEMMA3_START_DOCSTRING, |
|
) |
|
class Gemma3MMForConditionalGeneration(Gemma3MMPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: Gemma3MMConfig): |
|
super().__init__(config) |
|
self.vision_tower = AutoModel.from_config(config=config.vision_config) |
|
audio_config = config.audio_config.to_diff_dict() |
|
for item in ['transformers_version', 'model_type', 'torch_dtype']: |
|
if item in audio_config: |
|
audio_config.pop(item) |
|
self.audio_tower = ConformerEncoder(**audio_config) |
|
self.audio_tower.post_init({}) |
|
self.audio_projector = nn.Sequential( |
|
nn.Linear(in_features=config.audio_config.attention_dim, out_features=config.text_config.hidden_size, bias=True), |
|
nn.GELU(approximate='none'), |
|
nn.Linear(in_features=config.text_config.hidden_size, out_features=config.text_config.hidden_size, bias=True) |
|
).to(dtype=self.dtype) |
|
|
|
self.multi_modal_projector = Gemma3MultiModalProjector(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
|
|
language_model = AutoModelForCausalLM.from_config(config=config.text_config) |
|
|
|
if language_model._tied_weights_keys is not None: |
|
self._tied_weights_keys = [f"language_model.{k}" for k in language_model._tied_weights_keys] |
|
self.language_model = language_model |
|
|
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
|
|
|
|
if hasattr(config, "speech_lora") and config.speech_lora is not None: |
|
from peft import LoraConfig, get_peft_model |
|
import warnings |
|
|
|
speech_lora_config = LoraConfig( |
|
r=config.speech_lora['r'], |
|
lora_alpha=config.speech_lora['lora_alpha'], |
|
target_modules=config.speech_lora['layer'], |
|
use_rslora=config.speech_lora['use_rslora'], |
|
lora_dropout=config.speech_lora['dp'], |
|
task_type="CAUSAL_LM", |
|
) |
|
self.language_model.model = get_peft_model(self.language_model.model, speech_lora_config, adapter_name="speech") |
|
|
|
self.post_init() |
|
|
|
def set_lora_adapter(self, adapter_name) -> None: |
|
from peft.tuners.lora.layer import LoraLayer |
|
for module in self.modules(): |
|
if isinstance(module, LoraLayer): |
|
if module.merged: |
|
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") |
|
module.unmerge() |
|
module.set_adapter(adapter_name) |
|
module._disable_adapters = False |
|
|
|
def unset_lora_adapter(self) -> None: |
|
|
|
|
|
from peft.tuners.lora.layer import LoraLayer |
|
for module in self.modules(): |
|
if isinstance(module, LoraLayer): |
|
|
|
|
|
for layer_name in module.adapter_layer_names: |
|
layer = getattr(module, layer_name) |
|
layer.requires_grad_(False) |
|
module._disable_adapters = True |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.language_model.get_output_embeddings() |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.language_model.set_output_embeddings(new_embeddings) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.language_model.get_decoder() |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask, |
|
token_type_ids, |
|
past_key_values, |
|
cache_position, |
|
input_tensor, |
|
is_training: bool = False, |
|
): |
|
if self.config.text_config._attn_implementation == "flash_attention_2": |
|
return attention_mask |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
|
|
return attention_mask |
|
|
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
min_dtype = torch.finfo(self.dtype).min |
|
inputs_lead_dim, sequence_length = input_tensor.shape[:2] |
|
if using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
elif isinstance(past_key_values, HybridCache): |
|
target_length = past_key_values.get_max_cache_shape() |
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else cache_position[0] + sequence_length + 1 |
|
) |
|
|
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
return attention_mask |
|
|
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=self.dtype, device=cache_position.device |
|
) |
|
|
|
|
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
|
|
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(inputs_lead_dim, 1, -1, -1) |
|
|
|
|
|
if token_type_ids is not None and sequence_length != 1: |
|
token_type_mask = token_type_ids.unsqueeze(1) == token_type_ids.unsqueeze(2) |
|
token_type_mask[token_type_ids == 0] = False |
|
token_type_mask = token_type_mask.unsqueeze(1).to(causal_mask.device, dtype=torch.bool) |
|
causal_mask = causal_mask.clone() |
|
causal_mask[:, :, :, :sequence_length] = causal_mask[:, :, :, :sequence_length].masked_fill( |
|
token_type_mask, 0.0 |
|
) |
|
|
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
|
|
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(causal_mask.device) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
|
|
return causal_mask |
|
|
|
def get_image_features(self, pixel_values: torch.Tensor): |
|
""" |
|
Projects the last hidden state from the vision model into language model space. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) |
|
The tensors corresponding to the input images. |
|
Returns: |
|
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). |
|
""" |
|
vision_outputs = self.vision_tower(pixel_values=pixel_values).last_hidden_state |
|
image_features = self.multi_modal_projector(vision_outputs) |
|
return image_features |
|
|
|
def get_audio_features(self, input_audio_embeds: torch.FloatTensor, audio_attention_mask: torch.FloatTensor, audio_embed_sizes: torch.FloatTensor): |
|
""" |
|
Projects the last hidden state from the audio model into language model space. |
|
|
|
Args: |
|
audio_inputs (`torch.FloatTensor]` of shape `(batch_size, sequence_length, feature_dim)`) |
|
The tensors corresponding to the input audio features. |
|
|
|
Returns: |
|
audio_features (`torch.Tensor`): Audio feature tensor of shape `(batch_size, audio_length, embed_dim)`). |
|
""" |
|
audio_features, masks = self.audio_tower(input_audio_embeds, audio_attention_mask) |
|
audio_outputs = self.audio_projector(audio_features) |
|
return audio_outputs |
|
|
|
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep") |
|
@add_start_docstrings_to_model_forward(GEMMA3_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Gemma3CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
input_audio_embeds: torch.FloatTensor = None, |
|
audio_embed_sizes: torch.FloatTensor = None, |
|
audio_attention_mask: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
input_modes: torch.LongTensor = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**lm_kwargs, |
|
) -> Union[Tuple, Gemma3CausalLMOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. |
|
|
|
logits_to_keep (`int` or `torch.Tensor`, *optional*): |
|
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all |
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that |
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size. |
|
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension. |
|
This is useful when using packed tensor format (single dimension for batch and sequence length). |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, Gemma3MMForConditionalGeneration |
|
|
|
>>> model = Gemma3MMForConditionalGeneration.from_pretrained("google/Gemma3-test-224px-hf") |
|
>>> processor = AutoProcessor.from_pretrained("google/Gemma3-test-224px-hf") |
|
|
|
>>> prompt = "answer en Where is the cow standing?" |
|
>>> url = "https://huggingface.co/gv-hf/Gemma3-test-224px-hf/resolve/main/cow_beach_1.png" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs, max_length=30) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"answer en Where is the cow standing?\nbeach" |
|
```""" |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if isinstance(input_modes, torch.Tensor): |
|
|
|
input_modes = input_modes.unique() |
|
if len(input_modes) != 1: |
|
raise ValueError("Elements of input_modes should have the same value") |
|
|
|
input_mode = InputMode(input_modes.item()) |
|
|
|
if input_mode in [InputMode.VISION_SPEECH, InputMode.VISION]: |
|
self.unset_lora_adapter() |
|
|
|
|
|
elif input_mode == InputMode.SPEECH: |
|
self.set_lora_adapter('speech') |
|
|
|
elif input_mode == InputMode.LANGUAGE: |
|
self.unset_lora_adapter() |
|
|
|
else: |
|
raise ValueError(f"Invalid input_mode: {input_mode}") |
|
|
|
is_training = token_type_ids is not None and labels is not None |
|
|
|
|
|
if input_ids is not None and self.config.image_token_index >= self.vocab_size or self.config.audio_token_index >= self.vocab_size: |
|
special_image_mask = input_ids == self.config.image_token_index |
|
special_audio_mask = input_ids == self.config.audio_token_index |
|
llm_input_ids = input_ids.clone() |
|
llm_input_ids[special_image_mask] = 0 |
|
llm_input_ids[special_audio_mask] = 0 |
|
else: |
|
llm_input_ids = input_ids |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(llm_input_ids) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) + 1 |
|
|
|
|
|
if pixel_values is not None: |
|
image_features = self.get_image_features(pixel_values) |
|
|
|
if input_ids is None: |
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
torch.tensor(self.config.image_token_index, dtype=torch.long, device=inputs_embeds.device) |
|
) |
|
else: |
|
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1) |
|
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0] |
|
raise ValueError( |
|
f"Number of images does not match number of special image tokens in the input text. " |
|
f"Got {image_tokens_in_text} image tokens in the text but {image_features.shape[0] * image_features.shape[1]} " |
|
"tokens from image embeddings." |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
|
|
if input_audio_embeds is not None: |
|
audio_features = self.get_audio_features(input_audio_embeds, audio_attention_mask, audio_embed_sizes) |
|
if input_ids is None: |
|
special_audio_mask = inputs_embeds == self.get_input_embeddings()( |
|
torch.tensor(self.config.audio_token_index, dtype=torch.long, device=inputs_embeds.device) |
|
) |
|
else: |
|
special_audio_mask = (input_ids == self.config.audio_token_index).unsqueeze(-1) |
|
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
masked_audio_features = [] |
|
for i, size in enumerate(audio_embed_sizes): |
|
masked_audio_features.append(audio_features[i, :size, :]) |
|
masked_audio_features = torch.cat(masked_audio_features, dim=0) |
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != masked_audio_features.numel(): |
|
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0] |
|
masked_audio_size = audio_embed_sizes.sum()[0] |
|
raise ValueError( |
|
f"Number of images does not match number of special image tokens in the input text. " |
|
f"Got {audio_tokens_in_text} image tokens in the text but {masked_audio_size} " |
|
"tokens from image embeddings." |
|
) |
|
masked_audio_features = masked_audio_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, masked_audio_features) |
|
|
|
|
|
if labels is not None and self.pad_token_id in labels: |
|
logger.warning_once( |
|
"`labels` contains `pad_token_id` which will be masked with `config.ignore_index`. " |
|
"You have to mask out `pad_token_id` when preparing `labels`, this behavior will be removed in v.4.46.", |
|
) |
|
labels = torch.where(input_ids == self.pad_token_id, self.config.ignore_index, labels) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, token_type_ids, past_key_values, cache_position, inputs_embeds, is_training |
|
) |
|
outputs = self.language_model( |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**lm_kwargs, |
|
) |
|
|
|
logits = outputs.logits |
|
loss = None |
|
if labels is not None: |
|
|
|
logits = logits.float() |
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
if attention_mask is not None: |
|
|
|
|
|
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device) |
|
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = shift_logits.contiguous() |
|
shift_labels = shift_labels.contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) |
|
flat_labels = shift_labels.view(-1).to(shift_logits.device) |
|
loss = loss_fct(flat_logits, flat_labels) |
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return Gemma3CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
audio_hidden_states=audio_features if input_audio_embeds is not None else None, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
input_modes=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
pixel_values=None, |
|
input_audio_embeds=None, |
|
audio_embed_sizes=None, |
|
audio_attention_mask=None, |
|
attention_mask=None, |
|
token_type_ids=None, |
|
use_cache=True, |
|
logits_to_keep=None, |
|
labels=None, |
|
**kwargs, |
|
): |
|
|
|
model_inputs = self.language_model.prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
input_modes=input_modes, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
cache_position=cache_position, |
|
use_cache=use_cache, |
|
logits_to_keep=logits_to_keep, |
|
token_type_ids=token_type_ids, |
|
**kwargs, |
|
) |
|
|
|
|
|
if model_inputs.get("position_ids") is not None: |
|
model_inputs["position_ids"] += 1 |
|
|
|
|
|
if cache_position[0] == 0: |
|
model_inputs["pixel_values"] = pixel_values |
|
model_inputs["input_audio_embeds"] = input_audio_embeds |
|
model_inputs["audio_embed_sizes"] = audio_embed_sizes |
|
model_inputs["audio_attention_mask"] = audio_attention_mask |
|
model_inputs["input_modes"] = input_modes |
|
is_training = token_type_ids is not None and labels is not None |
|
if cache_position[0] == 0 and isinstance(past_key_values, HybridCache): |
|
input_tensor = inputs_embeds if inputs_embeds is not None else input_ids |
|
causal_mask = self._update_causal_mask( |
|
attention_mask, token_type_ids, past_key_values, cache_position, input_tensor, is_training |
|
) |
|
model_inputs["attention_mask"] = causal_mask |
|
|
|
return model_inputs |
|
|
|
def tie_weights(self): |
|
return self.language_model.tie_weights() |