Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Counter Strike 2 Weapon Detector
|
2 |
+
|
3 |
+
#### Supported Labels
|
4 |
+
['AK47', 'M4A1-S', 'M4A1', 'GALIL', 'FAMAS', 'TEC-9', 'FIVE-SEVEN', 'GLOCK-18', 'USP-S', 'EAGLE', 'BERETTAS', 'P2000', 'MAC10', 'MP5', 'MP9', 'P90', 'P250', 'SSG08', 'AWP']
|
5 |
+
|
6 |
+
#### How to use
|
7 |
+
```
|
8 |
+
from ultralytics import YOLO
|
9 |
+
|
10 |
+
# Load a pretrained YOLO model
|
11 |
+
model = YOLO(r'weights\cs2-yolo12-weapon-detection.pt')
|
12 |
+
|
13 |
+
# Run inference on 'image.png' with arguments
|
14 |
+
model.predict(
|
15 |
+
'image.png',
|
16 |
+
save=True,
|
17 |
+
device=0
|
18 |
+
)
|
19 |
+
```
|
20 |
+
|
21 |
+
#### Labels
|
22 |
+

|
23 |
+
#### Results
|
24 |
+

|
25 |
+
#### Predict
|
26 |
+

|
27 |
+

|
28 |
+

|
29 |
+
```
|
30 |
+
YOLOv12m summary (fused): 169 layers, 20,119,561 parameters, 0 gradients, 67.2 GFLOPs
|
31 |
+
Class Images Instances Box(P R mAP50 mAP50-95): 100%|ββββββββββ| 3/3 [00:01<00:00, 2.61it/s]
|
32 |
+
all 87 158 0.963 1 0.993 0.871
|
33 |
+
AK47 11 14 0.979 1 0.995 0.853
|
34 |
+
M4A1-S 8 12 0.987 1 0.995 0.849
|
35 |
+
M4A1 9 13 0.978 1 0.995 0.844
|
36 |
+
GALIL 8 11 0.974 1 0.995 0.859
|
37 |
+
FAMAS 7 7 0.963 1 0.995 0.926
|
38 |
+
TEC-9 4 4 0.985 1 0.995 0.917
|
39 |
+
FIVE-SEVEN 5 5 0.96 1 0.995 0.903
|
40 |
+
GLOCK-18 4 4 0.932 1 0.995 0.905
|
41 |
+
USP-S 10 10 0.966 1 0.995 0.9
|
42 |
+
EAGLE 4 4 0.933 1 0.995 0.847
|
43 |
+
BERETTAS 4 4 0.929 1 0.995 0.948
|
44 |
+
MAC10 6 6 0.953 1 0.995 0.891
|
45 |
+
MP5 7 11 0.978 1 0.995 0.852
|
46 |
+
MP9 7 11 0.978 1 0.995 0.888
|
47 |
+
P90 9 13 0.978 1 0.995 0.842
|
48 |
+
P250 6 6 0.977 1 0.995 0.861
|
49 |
+
SSG08 8 11 0.9 1 0.95 0.785
|
50 |
+
AWP 8 12 0.99 1 0.995 0.805
|
51 |
+
Speed: 0.2ms preprocess, 9.3ms inference, 0.0ms loss, 1.2ms postprocess per image
|
52 |
+
```
|
53 |
+
|
54 |
+
#### Others models Counter Strike 2
|
55 |
+
https://huggingface.co/ChitoParedes/
|