---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4361
- loss:CosineSimilarityLoss
base_model: snunlp/KR-SBERT-V40K-klueNLI-augSTS
widget:
- source_sentence: 생일
sentences:
- 사번
- 우편번호
- 연락처
- source_sentence: residence
sentences:
- 전자우편
- 이메일
- 제품명
- source_sentence: ssn
sentences:
- contact info
- 문서번호
- 오류번호
- source_sentence: 이메일
sentences:
- 항목명
- gender
- residence
- source_sentence: phonenumber
sentences:
- 품목명
- 함수명
- 캠퍼스명
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on snunlp/KR-SBERT-V40K-klueNLI-augSTS
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [snunlp/KR-SBERT-V40K-klueNLI-augSTS](https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [snunlp/KR-SBERT-V40K-klueNLI-augSTS](https://huggingface.co/snunlp/KR-SBERT-V40K-klueNLI-augSTS)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'phonenumber',
'캠퍼스명',
'함수명',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,361 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
address
| 기관명
| 0.0
|
| 성함
| 계정번호
| 0.0
|
| phonenumber
| 과목번호
| 0.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters