jbrinkma commited on
Commit
1129d29
·
verified ·
1 Parent(s): c173bbb

Model save

Browse files
Files changed (2) hide show
  1. README.md +35 -48
  2. adapter_model.safetensors +1 -1
README.md CHANGED
@@ -1,68 +1,55 @@
1
  ---
 
 
2
  base_model: Qwen/Qwen2-0.5B-Instruct
3
- library_name: transformers
4
- model_name: Qwen2-0.5B-GRPO-test
5
  tags:
6
- - generated_from_trainer
7
  - trl
8
  - grpo
9
- licence: license
 
 
 
10
  ---
11
 
12
- # Model Card for Qwen2-0.5B-GRPO-test
13
-
14
- This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).
15
- It has been trained using [TRL](https://github.com/huggingface/trl).
16
-
17
- ## Quick start
18
 
19
- ```python
20
- from transformers import pipeline
21
 
22
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
- generator = pipeline("text-generation", model="jbrinkma/Qwen2-0.5B-GRPO-test", device="cuda")
24
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
- print(output["generated_text"])
26
- ```
27
 
28
- ## Training procedure
29
 
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/icl-grok/NuminaMath-TIR/runs/r1d9umv1)
31
 
 
32
 
33
- This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
 
35
- ### Framework versions
36
 
37
- - TRL: 0.19.0
38
- - Transformers: 4.52.4
39
- - Pytorch: 2.7.1
40
- - Datasets: 3.6.0
41
- - Tokenizers: 0.21.2
42
 
43
- ## Citations
44
 
45
- Cite GRPO as:
46
 
47
- ```bibtex
48
- @article{zhihong2024deepseekmath,
49
- title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
- author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
- year = 2024,
52
- eprint = {arXiv:2402.03300},
53
- }
 
 
 
54
 
55
- ```
56
 
57
- Cite TRL as:
58
-
59
- ```bibtex
60
- @misc{vonwerra2022trl,
61
- title = {{TRL: Transformer Reinforcement Learning}},
62
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
63
- year = 2020,
64
- journal = {GitHub repository},
65
- publisher = {GitHub},
66
- howpublished = {\url{https://github.com/huggingface/trl}}
67
- }
68
- ```
 
1
  ---
2
+ library_name: peft
3
+ license: apache-2.0
4
  base_model: Qwen/Qwen2-0.5B-Instruct
 
 
5
  tags:
 
6
  - trl
7
  - grpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Qwen2-0.5B-GRPO-test
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
16
 
17
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/icl-grok/NuminaMath-TIR/runs/r1d9umv1)
18
+ # Qwen2-0.5B-GRPO-test
19
 
20
+ This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on an unknown dataset.
 
 
 
 
21
 
22
+ ## Model description
23
 
24
+ More information needed
25
 
26
+ ## Intended uses & limitations
27
 
28
+ More information needed
29
 
30
+ ## Training and evaluation data
31
 
32
+ More information needed
 
 
 
 
33
 
34
+ ## Training procedure
35
 
36
+ ### Training hyperparameters
37
 
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 16
44
+ - total_train_batch_size: 128
45
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 1
48
 
49
+ ### Framework versions
50
 
51
+ - PEFT 0.15.2
52
+ - Transformers 4.52.4
53
+ - Pytorch 2.7.1+cu126
54
+ - Datasets 3.6.0
55
+ - Tokenizers 0.21.2
 
 
 
 
 
 
 
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6358dcf93b193422832362f50e72a07af5f9d373f3e909a010a0e52d127dbfb1
3
  size 2175168
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416d57541cc28dc11309a2be7328b62d003306f4f378a53d805fbfb57ce1785c
3
  size 2175168