jbilcke-hf HF Staff commited on
Commit
bea6e03
·
verified ·
1 Parent(s): 31ce3d8

Upload 25 files

Browse files
ltx_video/__init__.py ADDED
File without changes
ltx_video/models/__init__.py ADDED
File without changes
ltx_video/models/autoencoders/__init__.py ADDED
File without changes
ltx_video/models/autoencoders/causal_conv3d.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, Union
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ class CausalConv3d(nn.Module):
8
+ def __init__(
9
+ self,
10
+ in_channels,
11
+ out_channels,
12
+ kernel_size: int = 3,
13
+ stride: Union[int, Tuple[int]] = 1,
14
+ dilation: int = 1,
15
+ groups: int = 1,
16
+ spatial_padding_mode: str = "zeros",
17
+ **kwargs,
18
+ ):
19
+ super().__init__()
20
+
21
+ self.in_channels = in_channels
22
+ self.out_channels = out_channels
23
+
24
+ kernel_size = (kernel_size, kernel_size, kernel_size)
25
+ self.time_kernel_size = kernel_size[0]
26
+
27
+ dilation = (dilation, 1, 1)
28
+
29
+ height_pad = kernel_size[1] // 2
30
+ width_pad = kernel_size[2] // 2
31
+ padding = (0, height_pad, width_pad)
32
+
33
+ self.conv = nn.Conv3d(
34
+ in_channels,
35
+ out_channels,
36
+ kernel_size,
37
+ stride=stride,
38
+ dilation=dilation,
39
+ padding=padding,
40
+ padding_mode=spatial_padding_mode,
41
+ groups=groups,
42
+ )
43
+
44
+ def forward(self, x, causal: bool = True):
45
+ if causal:
46
+ first_frame_pad = x[:, :, :1, :, :].repeat(
47
+ (1, 1, self.time_kernel_size - 1, 1, 1)
48
+ )
49
+ x = torch.concatenate((first_frame_pad, x), dim=2)
50
+ else:
51
+ first_frame_pad = x[:, :, :1, :, :].repeat(
52
+ (1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
53
+ )
54
+ last_frame_pad = x[:, :, -1:, :, :].repeat(
55
+ (1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
56
+ )
57
+ x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
58
+ x = self.conv(x)
59
+ return x
60
+
61
+ @property
62
+ def weight(self):
63
+ return self.conv.weight
ltx_video/models/autoencoders/causal_video_autoencoder.py ADDED
@@ -0,0 +1,1413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from functools import partial
4
+ from types import SimpleNamespace
5
+ from typing import Any, Mapping, Optional, Tuple, Union, List
6
+ from pathlib import Path
7
+
8
+ import torch
9
+ import numpy as np
10
+ from einops import rearrange
11
+ from torch import nn
12
+ from diffusers.utils import logging
13
+ import torch.nn.functional as F
14
+ from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
15
+ from safetensors import safe_open
16
+
17
+
18
+ from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
19
+ from ltx_video.models.autoencoders.pixel_norm import PixelNorm
20
+ from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
21
+ from ltx_video.models.transformers.attention import Attention
22
+ from ltx_video.utils.diffusers_config_mapping import (
23
+ diffusers_and_ours_config_mapping,
24
+ make_hashable_key,
25
+ VAE_KEYS_RENAME_DICT,
26
+ )
27
+
28
+ PER_CHANNEL_STATISTICS_PREFIX = "per_channel_statistics."
29
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
30
+
31
+
32
+ class CausalVideoAutoencoder(AutoencoderKLWrapper):
33
+ @classmethod
34
+ def from_pretrained(
35
+ cls,
36
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
37
+ *args,
38
+ **kwargs,
39
+ ):
40
+ pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
41
+ if (
42
+ pretrained_model_name_or_path.is_dir()
43
+ and (pretrained_model_name_or_path / "autoencoder.pth").exists()
44
+ ):
45
+ config_local_path = pretrained_model_name_or_path / "config.json"
46
+ config = cls.load_config(config_local_path, **kwargs)
47
+
48
+ model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
49
+ state_dict = torch.load(model_local_path, map_location=torch.device("cpu"))
50
+
51
+ statistics_local_path = (
52
+ pretrained_model_name_or_path / "per_channel_statistics.json"
53
+ )
54
+ if statistics_local_path.exists():
55
+ with open(statistics_local_path, "r") as file:
56
+ data = json.load(file)
57
+ transposed_data = list(zip(*data["data"]))
58
+ data_dict = {
59
+ col: torch.tensor(vals)
60
+ for col, vals in zip(data["columns"], transposed_data)
61
+ }
62
+ std_of_means = data_dict["std-of-means"]
63
+ mean_of_means = data_dict.get(
64
+ "mean-of-means", torch.zeros_like(data_dict["std-of-means"])
65
+ )
66
+ state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}std-of-means"] = (
67
+ std_of_means
68
+ )
69
+ state_dict[f"{PER_CHANNEL_STATISTICS_PREFIX}mean-of-means"] = (
70
+ mean_of_means
71
+ )
72
+
73
+ elif pretrained_model_name_or_path.is_dir():
74
+ config_path = pretrained_model_name_or_path / "vae" / "config.json"
75
+ with open(config_path, "r") as f:
76
+ config = make_hashable_key(json.load(f))
77
+
78
+ assert config in diffusers_and_ours_config_mapping, (
79
+ "Provided diffusers checkpoint config for VAE is not suppported. "
80
+ "We only support diffusers configs found in Lightricks/LTX-Video."
81
+ )
82
+
83
+ config = diffusers_and_ours_config_mapping[config]
84
+
85
+ state_dict_path = (
86
+ pretrained_model_name_or_path
87
+ / "vae"
88
+ / "diffusion_pytorch_model.safetensors"
89
+ )
90
+
91
+ state_dict = {}
92
+ with safe_open(state_dict_path, framework="pt", device="cpu") as f:
93
+ for k in f.keys():
94
+ state_dict[k] = f.get_tensor(k)
95
+ for key in list(state_dict.keys()):
96
+ new_key = key
97
+ for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items():
98
+ new_key = new_key.replace(replace_key, rename_key)
99
+
100
+ state_dict[new_key] = state_dict.pop(key)
101
+
102
+ elif pretrained_model_name_or_path.is_file() and str(
103
+ pretrained_model_name_or_path
104
+ ).endswith(".safetensors"):
105
+ state_dict = {}
106
+ with safe_open(
107
+ pretrained_model_name_or_path, framework="pt", device="cpu"
108
+ ) as f:
109
+ metadata = f.metadata()
110
+ for k in f.keys():
111
+ state_dict[k] = f.get_tensor(k)
112
+ configs = json.loads(metadata["config"])
113
+ config = configs["vae"]
114
+
115
+ video_vae = cls.from_config(config)
116
+ if "torch_dtype" in kwargs:
117
+ video_vae.to(kwargs["torch_dtype"])
118
+ video_vae.load_state_dict(state_dict)
119
+ return video_vae
120
+
121
+ @staticmethod
122
+ def from_config(config):
123
+ assert (
124
+ config["_class_name"] == "CausalVideoAutoencoder"
125
+ ), "config must have _class_name=CausalVideoAutoencoder"
126
+ if isinstance(config["dims"], list):
127
+ config["dims"] = tuple(config["dims"])
128
+
129
+ assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
130
+
131
+ double_z = config.get("double_z", True)
132
+ latent_log_var = config.get(
133
+ "latent_log_var", "per_channel" if double_z else "none"
134
+ )
135
+ use_quant_conv = config.get("use_quant_conv", True)
136
+ normalize_latent_channels = config.get("normalize_latent_channels", False)
137
+
138
+ if use_quant_conv and latent_log_var in ["uniform", "constant"]:
139
+ raise ValueError(
140
+ f"latent_log_var={latent_log_var} requires use_quant_conv=False"
141
+ )
142
+
143
+ encoder = Encoder(
144
+ dims=config["dims"],
145
+ in_channels=config.get("in_channels", 3),
146
+ out_channels=config["latent_channels"],
147
+ blocks=config.get("encoder_blocks", config.get("blocks")),
148
+ patch_size=config.get("patch_size", 1),
149
+ latent_log_var=latent_log_var,
150
+ norm_layer=config.get("norm_layer", "group_norm"),
151
+ base_channels=config.get("encoder_base_channels", 128),
152
+ spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
153
+ )
154
+
155
+ decoder = Decoder(
156
+ dims=config["dims"],
157
+ in_channels=config["latent_channels"],
158
+ out_channels=config.get("out_channels", 3),
159
+ blocks=config.get("decoder_blocks", config.get("blocks")),
160
+ patch_size=config.get("patch_size", 1),
161
+ norm_layer=config.get("norm_layer", "group_norm"),
162
+ causal=config.get("causal_decoder", False),
163
+ timestep_conditioning=config.get("timestep_conditioning", False),
164
+ base_channels=config.get("decoder_base_channels", 128),
165
+ spatial_padding_mode=config.get("spatial_padding_mode", "zeros"),
166
+ )
167
+
168
+ dims = config["dims"]
169
+ return CausalVideoAutoencoder(
170
+ encoder=encoder,
171
+ decoder=decoder,
172
+ latent_channels=config["latent_channels"],
173
+ dims=dims,
174
+ use_quant_conv=use_quant_conv,
175
+ normalize_latent_channels=normalize_latent_channels,
176
+ )
177
+
178
+ @property
179
+ def config(self):
180
+ return SimpleNamespace(
181
+ _class_name="CausalVideoAutoencoder",
182
+ dims=self.dims,
183
+ in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2,
184
+ out_channels=self.decoder.conv_out.out_channels
185
+ // self.decoder.patch_size**2,
186
+ latent_channels=self.decoder.conv_in.in_channels,
187
+ encoder_blocks=self.encoder.blocks_desc,
188
+ decoder_blocks=self.decoder.blocks_desc,
189
+ scaling_factor=1.0,
190
+ norm_layer=self.encoder.norm_layer,
191
+ patch_size=self.encoder.patch_size,
192
+ latent_log_var=self.encoder.latent_log_var,
193
+ use_quant_conv=self.use_quant_conv,
194
+ causal_decoder=self.decoder.causal,
195
+ timestep_conditioning=self.decoder.timestep_conditioning,
196
+ normalize_latent_channels=self.normalize_latent_channels,
197
+ )
198
+
199
+ @property
200
+ def is_video_supported(self):
201
+ """
202
+ Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
203
+ """
204
+ return self.dims != 2
205
+
206
+ @property
207
+ def spatial_downscale_factor(self):
208
+ return (
209
+ 2
210
+ ** len(
211
+ [
212
+ block
213
+ for block in self.encoder.blocks_desc
214
+ if block[0]
215
+ in [
216
+ "compress_space",
217
+ "compress_all",
218
+ "compress_all_res",
219
+ "compress_space_res",
220
+ ]
221
+ ]
222
+ )
223
+ * self.encoder.patch_size
224
+ )
225
+
226
+ @property
227
+ def temporal_downscale_factor(self):
228
+ return 2 ** len(
229
+ [
230
+ block
231
+ for block in self.encoder.blocks_desc
232
+ if block[0]
233
+ in [
234
+ "compress_time",
235
+ "compress_all",
236
+ "compress_all_res",
237
+ "compress_space_res",
238
+ ]
239
+ ]
240
+ )
241
+
242
+ def to_json_string(self) -> str:
243
+ import json
244
+
245
+ return json.dumps(self.config.__dict__)
246
+
247
+ def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
248
+ if any([key.startswith("vae.") for key in state_dict.keys()]):
249
+ state_dict = {
250
+ key.replace("vae.", ""): value
251
+ for key, value in state_dict.items()
252
+ if key.startswith("vae.")
253
+ }
254
+ ckpt_state_dict = {
255
+ key: value
256
+ for key, value in state_dict.items()
257
+ if not key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
258
+ }
259
+
260
+ model_keys = set(name for name, _ in self.named_modules())
261
+
262
+ key_mapping = {
263
+ ".resnets.": ".res_blocks.",
264
+ "downsamplers.0": "downsample",
265
+ "upsamplers.0": "upsample",
266
+ }
267
+ converted_state_dict = {}
268
+ for key, value in ckpt_state_dict.items():
269
+ for k, v in key_mapping.items():
270
+ key = key.replace(k, v)
271
+
272
+ key_prefix = ".".join(key.split(".")[:-1])
273
+ if "norm" in key and key_prefix not in model_keys:
274
+ logger.info(
275
+ f"Removing key {key} from state_dict as it is not present in the model"
276
+ )
277
+ continue
278
+
279
+ converted_state_dict[key] = value
280
+
281
+ super().load_state_dict(converted_state_dict, strict=strict)
282
+
283
+ data_dict = {
284
+ key.removeprefix(PER_CHANNEL_STATISTICS_PREFIX): value
285
+ for key, value in state_dict.items()
286
+ if key.startswith(PER_CHANNEL_STATISTICS_PREFIX)
287
+ }
288
+ if len(data_dict) > 0:
289
+ self.register_buffer("std_of_means", data_dict["std-of-means"])
290
+ self.register_buffer(
291
+ "mean_of_means",
292
+ data_dict.get(
293
+ "mean-of-means", torch.zeros_like(data_dict["std-of-means"])
294
+ ),
295
+ )
296
+
297
+ def last_layer(self):
298
+ if hasattr(self.decoder, "conv_out"):
299
+ if isinstance(self.decoder.conv_out, nn.Sequential):
300
+ last_layer = self.decoder.conv_out[-1]
301
+ else:
302
+ last_layer = self.decoder.conv_out
303
+ else:
304
+ last_layer = self.decoder.layers[-1]
305
+ return last_layer
306
+
307
+ def set_use_tpu_flash_attention(self):
308
+ for block in self.decoder.up_blocks:
309
+ if isinstance(block, UNetMidBlock3D) and block.attention_blocks:
310
+ for attention_block in block.attention_blocks:
311
+ attention_block.set_use_tpu_flash_attention()
312
+
313
+
314
+ class Encoder(nn.Module):
315
+ r"""
316
+ The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
317
+
318
+ Args:
319
+ dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
320
+ The number of dimensions to use in convolutions.
321
+ in_channels (`int`, *optional*, defaults to 3):
322
+ The number of input channels.
323
+ out_channels (`int`, *optional*, defaults to 3):
324
+ The number of output channels.
325
+ blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
326
+ The blocks to use. Each block is a tuple of the block name and the number of layers.
327
+ base_channels (`int`, *optional*, defaults to 128):
328
+ The number of output channels for the first convolutional layer.
329
+ norm_num_groups (`int`, *optional*, defaults to 32):
330
+ The number of groups for normalization.
331
+ patch_size (`int`, *optional*, defaults to 1):
332
+ The patch size to use. Should be a power of 2.
333
+ norm_layer (`str`, *optional*, defaults to `group_norm`):
334
+ The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
335
+ latent_log_var (`str`, *optional*, defaults to `per_channel`):
336
+ The number of channels for the log variance. Can be either `per_channel`, `uniform`, `constant` or `none`.
337
+ """
338
+
339
+ def __init__(
340
+ self,
341
+ dims: Union[int, Tuple[int, int]] = 3,
342
+ in_channels: int = 3,
343
+ out_channels: int = 3,
344
+ blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
345
+ base_channels: int = 128,
346
+ norm_num_groups: int = 32,
347
+ patch_size: Union[int, Tuple[int]] = 1,
348
+ norm_layer: str = "group_norm", # group_norm, pixel_norm
349
+ latent_log_var: str = "per_channel",
350
+ spatial_padding_mode: str = "zeros",
351
+ ):
352
+ super().__init__()
353
+ self.patch_size = patch_size
354
+ self.norm_layer = norm_layer
355
+ self.latent_channels = out_channels
356
+ self.latent_log_var = latent_log_var
357
+ self.blocks_desc = blocks
358
+
359
+ in_channels = in_channels * patch_size**2
360
+ output_channel = base_channels
361
+
362
+ self.conv_in = make_conv_nd(
363
+ dims=dims,
364
+ in_channels=in_channels,
365
+ out_channels=output_channel,
366
+ kernel_size=3,
367
+ stride=1,
368
+ padding=1,
369
+ causal=True,
370
+ spatial_padding_mode=spatial_padding_mode,
371
+ )
372
+
373
+ self.down_blocks = nn.ModuleList([])
374
+
375
+ for block_name, block_params in blocks:
376
+ input_channel = output_channel
377
+ if isinstance(block_params, int):
378
+ block_params = {"num_layers": block_params}
379
+
380
+ if block_name == "res_x":
381
+ block = UNetMidBlock3D(
382
+ dims=dims,
383
+ in_channels=input_channel,
384
+ num_layers=block_params["num_layers"],
385
+ resnet_eps=1e-6,
386
+ resnet_groups=norm_num_groups,
387
+ norm_layer=norm_layer,
388
+ spatial_padding_mode=spatial_padding_mode,
389
+ )
390
+ elif block_name == "res_x_y":
391
+ output_channel = block_params.get("multiplier", 2) * output_channel
392
+ block = ResnetBlock3D(
393
+ dims=dims,
394
+ in_channels=input_channel,
395
+ out_channels=output_channel,
396
+ eps=1e-6,
397
+ groups=norm_num_groups,
398
+ norm_layer=norm_layer,
399
+ spatial_padding_mode=spatial_padding_mode,
400
+ )
401
+ elif block_name == "compress_time":
402
+ block = make_conv_nd(
403
+ dims=dims,
404
+ in_channels=input_channel,
405
+ out_channels=output_channel,
406
+ kernel_size=3,
407
+ stride=(2, 1, 1),
408
+ causal=True,
409
+ spatial_padding_mode=spatial_padding_mode,
410
+ )
411
+ elif block_name == "compress_space":
412
+ block = make_conv_nd(
413
+ dims=dims,
414
+ in_channels=input_channel,
415
+ out_channels=output_channel,
416
+ kernel_size=3,
417
+ stride=(1, 2, 2),
418
+ causal=True,
419
+ spatial_padding_mode=spatial_padding_mode,
420
+ )
421
+ elif block_name == "compress_all":
422
+ block = make_conv_nd(
423
+ dims=dims,
424
+ in_channels=input_channel,
425
+ out_channels=output_channel,
426
+ kernel_size=3,
427
+ stride=(2, 2, 2),
428
+ causal=True,
429
+ spatial_padding_mode=spatial_padding_mode,
430
+ )
431
+ elif block_name == "compress_all_x_y":
432
+ output_channel = block_params.get("multiplier", 2) * output_channel
433
+ block = make_conv_nd(
434
+ dims=dims,
435
+ in_channels=input_channel,
436
+ out_channels=output_channel,
437
+ kernel_size=3,
438
+ stride=(2, 2, 2),
439
+ causal=True,
440
+ spatial_padding_mode=spatial_padding_mode,
441
+ )
442
+ elif block_name == "compress_all_res":
443
+ output_channel = block_params.get("multiplier", 2) * output_channel
444
+ block = SpaceToDepthDownsample(
445
+ dims=dims,
446
+ in_channels=input_channel,
447
+ out_channels=output_channel,
448
+ stride=(2, 2, 2),
449
+ spatial_padding_mode=spatial_padding_mode,
450
+ )
451
+ elif block_name == "compress_space_res":
452
+ output_channel = block_params.get("multiplier", 2) * output_channel
453
+ block = SpaceToDepthDownsample(
454
+ dims=dims,
455
+ in_channels=input_channel,
456
+ out_channels=output_channel,
457
+ stride=(1, 2, 2),
458
+ spatial_padding_mode=spatial_padding_mode,
459
+ )
460
+ elif block_name == "compress_time_res":
461
+ output_channel = block_params.get("multiplier", 2) * output_channel
462
+ block = SpaceToDepthDownsample(
463
+ dims=dims,
464
+ in_channels=input_channel,
465
+ out_channels=output_channel,
466
+ stride=(2, 1, 1),
467
+ spatial_padding_mode=spatial_padding_mode,
468
+ )
469
+ else:
470
+ raise ValueError(f"unknown block: {block_name}")
471
+
472
+ self.down_blocks.append(block)
473
+
474
+ # out
475
+ if norm_layer == "group_norm":
476
+ self.conv_norm_out = nn.GroupNorm(
477
+ num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
478
+ )
479
+ elif norm_layer == "pixel_norm":
480
+ self.conv_norm_out = PixelNorm()
481
+ elif norm_layer == "layer_norm":
482
+ self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
483
+
484
+ self.conv_act = nn.SiLU()
485
+
486
+ conv_out_channels = out_channels
487
+ if latent_log_var == "per_channel":
488
+ conv_out_channels *= 2
489
+ elif latent_log_var == "uniform":
490
+ conv_out_channels += 1
491
+ elif latent_log_var == "constant":
492
+ conv_out_channels += 1
493
+ elif latent_log_var != "none":
494
+ raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
495
+ self.conv_out = make_conv_nd(
496
+ dims,
497
+ output_channel,
498
+ conv_out_channels,
499
+ 3,
500
+ padding=1,
501
+ causal=True,
502
+ spatial_padding_mode=spatial_padding_mode,
503
+ )
504
+
505
+ self.gradient_checkpointing = False
506
+
507
+ def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
508
+ r"""The forward method of the `Encoder` class."""
509
+
510
+ sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
511
+ sample = self.conv_in(sample)
512
+
513
+ checkpoint_fn = (
514
+ partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
515
+ if self.gradient_checkpointing and self.training
516
+ else lambda x: x
517
+ )
518
+
519
+ for down_block in self.down_blocks:
520
+ sample = checkpoint_fn(down_block)(sample)
521
+
522
+ sample = self.conv_norm_out(sample)
523
+ sample = self.conv_act(sample)
524
+ sample = self.conv_out(sample)
525
+
526
+ if self.latent_log_var == "uniform":
527
+ last_channel = sample[:, -1:, ...]
528
+ num_dims = sample.dim()
529
+
530
+ if num_dims == 4:
531
+ # For shape (B, C, H, W)
532
+ repeated_last_channel = last_channel.repeat(
533
+ 1, sample.shape[1] - 2, 1, 1
534
+ )
535
+ sample = torch.cat([sample, repeated_last_channel], dim=1)
536
+ elif num_dims == 5:
537
+ # For shape (B, C, F, H, W)
538
+ repeated_last_channel = last_channel.repeat(
539
+ 1, sample.shape[1] - 2, 1, 1, 1
540
+ )
541
+ sample = torch.cat([sample, repeated_last_channel], dim=1)
542
+ else:
543
+ raise ValueError(f"Invalid input shape: {sample.shape}")
544
+ elif self.latent_log_var == "constant":
545
+ sample = sample[:, :-1, ...]
546
+ approx_ln_0 = (
547
+ -30
548
+ ) # this is the minimal clamp value in DiagonalGaussianDistribution objects
549
+ sample = torch.cat(
550
+ [sample, torch.ones_like(sample, device=sample.device) * approx_ln_0],
551
+ dim=1,
552
+ )
553
+
554
+ return sample
555
+
556
+
557
+ class Decoder(nn.Module):
558
+ r"""
559
+ The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
560
+
561
+ Args:
562
+ dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3):
563
+ The number of dimensions to use in convolutions.
564
+ in_channels (`int`, *optional*, defaults to 3):
565
+ The number of input channels.
566
+ out_channels (`int`, *optional*, defaults to 3):
567
+ The number of output channels.
568
+ blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`):
569
+ The blocks to use. Each block is a tuple of the block name and the number of layers.
570
+ base_channels (`int`, *optional*, defaults to 128):
571
+ The number of output channels for the first convolutional layer.
572
+ norm_num_groups (`int`, *optional*, defaults to 32):
573
+ The number of groups for normalization.
574
+ patch_size (`int`, *optional*, defaults to 1):
575
+ The patch size to use. Should be a power of 2.
576
+ norm_layer (`str`, *optional*, defaults to `group_norm`):
577
+ The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
578
+ causal (`bool`, *optional*, defaults to `True`):
579
+ Whether to use causal convolutions or not.
580
+ """
581
+
582
+ def __init__(
583
+ self,
584
+ dims,
585
+ in_channels: int = 3,
586
+ out_channels: int = 3,
587
+ blocks: List[Tuple[str, int | dict]] = [("res_x", 1)],
588
+ base_channels: int = 128,
589
+ layers_per_block: int = 2,
590
+ norm_num_groups: int = 32,
591
+ patch_size: int = 1,
592
+ norm_layer: str = "group_norm",
593
+ causal: bool = True,
594
+ timestep_conditioning: bool = False,
595
+ spatial_padding_mode: str = "zeros",
596
+ ):
597
+ super().__init__()
598
+ self.patch_size = patch_size
599
+ self.layers_per_block = layers_per_block
600
+ out_channels = out_channels * patch_size**2
601
+ self.causal = causal
602
+ self.blocks_desc = blocks
603
+
604
+ # Compute output channel to be product of all channel-multiplier blocks
605
+ output_channel = base_channels
606
+ for block_name, block_params in list(reversed(blocks)):
607
+ block_params = block_params if isinstance(block_params, dict) else {}
608
+ if block_name == "res_x_y":
609
+ output_channel = output_channel * block_params.get("multiplier", 2)
610
+ if block_name == "compress_all":
611
+ output_channel = output_channel * block_params.get("multiplier", 1)
612
+
613
+ self.conv_in = make_conv_nd(
614
+ dims,
615
+ in_channels,
616
+ output_channel,
617
+ kernel_size=3,
618
+ stride=1,
619
+ padding=1,
620
+ causal=True,
621
+ spatial_padding_mode=spatial_padding_mode,
622
+ )
623
+
624
+ self.up_blocks = nn.ModuleList([])
625
+
626
+ for block_name, block_params in list(reversed(blocks)):
627
+ input_channel = output_channel
628
+ if isinstance(block_params, int):
629
+ block_params = {"num_layers": block_params}
630
+
631
+ if block_name == "res_x":
632
+ block = UNetMidBlock3D(
633
+ dims=dims,
634
+ in_channels=input_channel,
635
+ num_layers=block_params["num_layers"],
636
+ resnet_eps=1e-6,
637
+ resnet_groups=norm_num_groups,
638
+ norm_layer=norm_layer,
639
+ inject_noise=block_params.get("inject_noise", False),
640
+ timestep_conditioning=timestep_conditioning,
641
+ spatial_padding_mode=spatial_padding_mode,
642
+ )
643
+ elif block_name == "attn_res_x":
644
+ block = UNetMidBlock3D(
645
+ dims=dims,
646
+ in_channels=input_channel,
647
+ num_layers=block_params["num_layers"],
648
+ resnet_groups=norm_num_groups,
649
+ norm_layer=norm_layer,
650
+ inject_noise=block_params.get("inject_noise", False),
651
+ timestep_conditioning=timestep_conditioning,
652
+ attention_head_dim=block_params["attention_head_dim"],
653
+ spatial_padding_mode=spatial_padding_mode,
654
+ )
655
+ elif block_name == "res_x_y":
656
+ output_channel = output_channel // block_params.get("multiplier", 2)
657
+ block = ResnetBlock3D(
658
+ dims=dims,
659
+ in_channels=input_channel,
660
+ out_channels=output_channel,
661
+ eps=1e-6,
662
+ groups=norm_num_groups,
663
+ norm_layer=norm_layer,
664
+ inject_noise=block_params.get("inject_noise", False),
665
+ timestep_conditioning=False,
666
+ spatial_padding_mode=spatial_padding_mode,
667
+ )
668
+ elif block_name == "compress_time":
669
+ block = DepthToSpaceUpsample(
670
+ dims=dims,
671
+ in_channels=input_channel,
672
+ stride=(2, 1, 1),
673
+ spatial_padding_mode=spatial_padding_mode,
674
+ )
675
+ elif block_name == "compress_space":
676
+ block = DepthToSpaceUpsample(
677
+ dims=dims,
678
+ in_channels=input_channel,
679
+ stride=(1, 2, 2),
680
+ spatial_padding_mode=spatial_padding_mode,
681
+ )
682
+ elif block_name == "compress_all":
683
+ output_channel = output_channel // block_params.get("multiplier", 1)
684
+ block = DepthToSpaceUpsample(
685
+ dims=dims,
686
+ in_channels=input_channel,
687
+ stride=(2, 2, 2),
688
+ residual=block_params.get("residual", False),
689
+ out_channels_reduction_factor=block_params.get("multiplier", 1),
690
+ spatial_padding_mode=spatial_padding_mode,
691
+ )
692
+ else:
693
+ raise ValueError(f"unknown layer: {block_name}")
694
+
695
+ self.up_blocks.append(block)
696
+
697
+ if norm_layer == "group_norm":
698
+ self.conv_norm_out = nn.GroupNorm(
699
+ num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6
700
+ )
701
+ elif norm_layer == "pixel_norm":
702
+ self.conv_norm_out = PixelNorm()
703
+ elif norm_layer == "layer_norm":
704
+ self.conv_norm_out = LayerNorm(output_channel, eps=1e-6)
705
+
706
+ self.conv_act = nn.SiLU()
707
+ self.conv_out = make_conv_nd(
708
+ dims,
709
+ output_channel,
710
+ out_channels,
711
+ 3,
712
+ padding=1,
713
+ causal=True,
714
+ spatial_padding_mode=spatial_padding_mode,
715
+ )
716
+
717
+ self.gradient_checkpointing = False
718
+
719
+ self.timestep_conditioning = timestep_conditioning
720
+
721
+ if timestep_conditioning:
722
+ self.timestep_scale_multiplier = nn.Parameter(
723
+ torch.tensor(1000.0, dtype=torch.float32)
724
+ )
725
+ self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
726
+ output_channel * 2, 0
727
+ )
728
+ self.last_scale_shift_table = nn.Parameter(
729
+ torch.randn(2, output_channel) / output_channel**0.5
730
+ )
731
+
732
+ def forward(
733
+ self,
734
+ sample: torch.FloatTensor,
735
+ target_shape,
736
+ timestep: Optional[torch.Tensor] = None,
737
+ ) -> torch.FloatTensor:
738
+ r"""The forward method of the `Decoder` class."""
739
+ assert target_shape is not None, "target_shape must be provided"
740
+ batch_size = sample.shape[0]
741
+
742
+ sample = self.conv_in(sample, causal=self.causal)
743
+
744
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
745
+
746
+ checkpoint_fn = (
747
+ partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
748
+ if self.gradient_checkpointing and self.training
749
+ else lambda x: x
750
+ )
751
+
752
+ sample = sample.to(upscale_dtype)
753
+
754
+ if self.timestep_conditioning:
755
+ assert (
756
+ timestep is not None
757
+ ), "should pass timestep with timestep_conditioning=True"
758
+ scaled_timestep = timestep * self.timestep_scale_multiplier
759
+
760
+ for up_block in self.up_blocks:
761
+ if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
762
+ sample = checkpoint_fn(up_block)(
763
+ sample, causal=self.causal, timestep=scaled_timestep
764
+ )
765
+ else:
766
+ sample = checkpoint_fn(up_block)(sample, causal=self.causal)
767
+
768
+ sample = self.conv_norm_out(sample)
769
+
770
+ if self.timestep_conditioning:
771
+ embedded_timestep = self.last_time_embedder(
772
+ timestep=scaled_timestep.flatten(),
773
+ resolution=None,
774
+ aspect_ratio=None,
775
+ batch_size=sample.shape[0],
776
+ hidden_dtype=sample.dtype,
777
+ )
778
+ embedded_timestep = embedded_timestep.view(
779
+ batch_size, embedded_timestep.shape[-1], 1, 1, 1
780
+ )
781
+ ada_values = self.last_scale_shift_table[
782
+ None, ..., None, None, None
783
+ ] + embedded_timestep.reshape(
784
+ batch_size,
785
+ 2,
786
+ -1,
787
+ embedded_timestep.shape[-3],
788
+ embedded_timestep.shape[-2],
789
+ embedded_timestep.shape[-1],
790
+ )
791
+ shift, scale = ada_values.unbind(dim=1)
792
+ sample = sample * (1 + scale) + shift
793
+
794
+ sample = self.conv_act(sample)
795
+ sample = self.conv_out(sample, causal=self.causal)
796
+
797
+ sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
798
+
799
+ return sample
800
+
801
+
802
+ class UNetMidBlock3D(nn.Module):
803
+ """
804
+ A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
805
+
806
+ Args:
807
+ in_channels (`int`): The number of input channels.
808
+ dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
809
+ num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
810
+ resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
811
+ resnet_groups (`int`, *optional*, defaults to 32):
812
+ The number of groups to use in the group normalization layers of the resnet blocks.
813
+ norm_layer (`str`, *optional*, defaults to `group_norm`):
814
+ The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
815
+ inject_noise (`bool`, *optional*, defaults to `False`):
816
+ Whether to inject noise into the hidden states.
817
+ timestep_conditioning (`bool`, *optional*, defaults to `False`):
818
+ Whether to condition the hidden states on the timestep.
819
+ attention_head_dim (`int`, *optional*, defaults to -1):
820
+ The dimension of the attention head. If -1, no attention is used.
821
+
822
+ Returns:
823
+ `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
824
+ in_channels, height, width)`.
825
+
826
+ """
827
+
828
+ def __init__(
829
+ self,
830
+ dims: Union[int, Tuple[int, int]],
831
+ in_channels: int,
832
+ dropout: float = 0.0,
833
+ num_layers: int = 1,
834
+ resnet_eps: float = 1e-6,
835
+ resnet_groups: int = 32,
836
+ norm_layer: str = "group_norm",
837
+ inject_noise: bool = False,
838
+ timestep_conditioning: bool = False,
839
+ attention_head_dim: int = -1,
840
+ spatial_padding_mode: str = "zeros",
841
+ ):
842
+ super().__init__()
843
+ resnet_groups = (
844
+ resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
845
+ )
846
+ self.timestep_conditioning = timestep_conditioning
847
+
848
+ if timestep_conditioning:
849
+ self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(
850
+ in_channels * 4, 0
851
+ )
852
+
853
+ self.res_blocks = nn.ModuleList(
854
+ [
855
+ ResnetBlock3D(
856
+ dims=dims,
857
+ in_channels=in_channels,
858
+ out_channels=in_channels,
859
+ eps=resnet_eps,
860
+ groups=resnet_groups,
861
+ dropout=dropout,
862
+ norm_layer=norm_layer,
863
+ inject_noise=inject_noise,
864
+ timestep_conditioning=timestep_conditioning,
865
+ spatial_padding_mode=spatial_padding_mode,
866
+ )
867
+ for _ in range(num_layers)
868
+ ]
869
+ )
870
+
871
+ self.attention_blocks = None
872
+
873
+ if attention_head_dim > 0:
874
+ if attention_head_dim > in_channels:
875
+ raise ValueError(
876
+ "attention_head_dim must be less than or equal to in_channels"
877
+ )
878
+
879
+ self.attention_blocks = nn.ModuleList(
880
+ [
881
+ Attention(
882
+ query_dim=in_channels,
883
+ heads=in_channels // attention_head_dim,
884
+ dim_head=attention_head_dim,
885
+ bias=True,
886
+ out_bias=True,
887
+ qk_norm="rms_norm",
888
+ residual_connection=True,
889
+ )
890
+ for _ in range(num_layers)
891
+ ]
892
+ )
893
+
894
+ def forward(
895
+ self,
896
+ hidden_states: torch.FloatTensor,
897
+ causal: bool = True,
898
+ timestep: Optional[torch.Tensor] = None,
899
+ ) -> torch.FloatTensor:
900
+ timestep_embed = None
901
+ if self.timestep_conditioning:
902
+ assert (
903
+ timestep is not None
904
+ ), "should pass timestep with timestep_conditioning=True"
905
+ batch_size = hidden_states.shape[0]
906
+ timestep_embed = self.time_embedder(
907
+ timestep=timestep.flatten(),
908
+ resolution=None,
909
+ aspect_ratio=None,
910
+ batch_size=batch_size,
911
+ hidden_dtype=hidden_states.dtype,
912
+ )
913
+ timestep_embed = timestep_embed.view(
914
+ batch_size, timestep_embed.shape[-1], 1, 1, 1
915
+ )
916
+
917
+ if self.attention_blocks:
918
+ for resnet, attention in zip(self.res_blocks, self.attention_blocks):
919
+ hidden_states = resnet(
920
+ hidden_states, causal=causal, timestep=timestep_embed
921
+ )
922
+
923
+ # Reshape the hidden states to be (batch_size, frames * height * width, channel)
924
+ batch_size, channel, frames, height, width = hidden_states.shape
925
+ hidden_states = hidden_states.view(
926
+ batch_size, channel, frames * height * width
927
+ ).transpose(1, 2)
928
+
929
+ if attention.use_tpu_flash_attention:
930
+ # Pad the second dimension to be divisible by block_k_major (block in flash attention)
931
+ seq_len = hidden_states.shape[1]
932
+ block_k_major = 512
933
+ pad_len = (block_k_major - seq_len % block_k_major) % block_k_major
934
+ if pad_len > 0:
935
+ hidden_states = F.pad(
936
+ hidden_states, (0, 0, 0, pad_len), "constant", 0
937
+ )
938
+
939
+ # Create a mask with ones for the original sequence length and zeros for the padded indexes
940
+ mask = torch.ones(
941
+ (hidden_states.shape[0], seq_len),
942
+ device=hidden_states.device,
943
+ dtype=hidden_states.dtype,
944
+ )
945
+ if pad_len > 0:
946
+ mask = F.pad(mask, (0, pad_len), "constant", 0)
947
+
948
+ hidden_states = attention(
949
+ hidden_states,
950
+ attention_mask=(
951
+ None if not attention.use_tpu_flash_attention else mask
952
+ ),
953
+ )
954
+
955
+ if attention.use_tpu_flash_attention:
956
+ # Remove the padding
957
+ if pad_len > 0:
958
+ hidden_states = hidden_states[:, :-pad_len, :]
959
+
960
+ # Reshape the hidden states back to (batch_size, channel, frames, height, width, channel)
961
+ hidden_states = hidden_states.transpose(-1, -2).reshape(
962
+ batch_size, channel, frames, height, width
963
+ )
964
+ else:
965
+ for resnet in self.res_blocks:
966
+ hidden_states = resnet(
967
+ hidden_states, causal=causal, timestep=timestep_embed
968
+ )
969
+
970
+ return hidden_states
971
+
972
+
973
+ class SpaceToDepthDownsample(nn.Module):
974
+ def __init__(self, dims, in_channels, out_channels, stride, spatial_padding_mode):
975
+ super().__init__()
976
+ self.stride = stride
977
+ self.group_size = in_channels * np.prod(stride) // out_channels
978
+ self.conv = make_conv_nd(
979
+ dims=dims,
980
+ in_channels=in_channels,
981
+ out_channels=out_channels // np.prod(stride),
982
+ kernel_size=3,
983
+ stride=1,
984
+ causal=True,
985
+ spatial_padding_mode=spatial_padding_mode,
986
+ )
987
+
988
+ def forward(self, x, causal: bool = True):
989
+ if self.stride[0] == 2:
990
+ x = torch.cat(
991
+ [x[:, :, :1, :, :], x], dim=2
992
+ ) # duplicate first frames for padding
993
+
994
+ # skip connection
995
+ x_in = rearrange(
996
+ x,
997
+ "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
998
+ p1=self.stride[0],
999
+ p2=self.stride[1],
1000
+ p3=self.stride[2],
1001
+ )
1002
+ x_in = rearrange(x_in, "b (c g) d h w -> b c g d h w", g=self.group_size)
1003
+ x_in = x_in.mean(dim=2)
1004
+
1005
+ # conv
1006
+ x = self.conv(x, causal=causal)
1007
+ x = rearrange(
1008
+ x,
1009
+ "b c (d p1) (h p2) (w p3) -> b (c p1 p2 p3) d h w",
1010
+ p1=self.stride[0],
1011
+ p2=self.stride[1],
1012
+ p3=self.stride[2],
1013
+ )
1014
+
1015
+ x = x + x_in
1016
+
1017
+ return x
1018
+
1019
+
1020
+ class DepthToSpaceUpsample(nn.Module):
1021
+ def __init__(
1022
+ self,
1023
+ dims,
1024
+ in_channels,
1025
+ stride,
1026
+ residual=False,
1027
+ out_channels_reduction_factor=1,
1028
+ spatial_padding_mode="zeros",
1029
+ ):
1030
+ super().__init__()
1031
+ self.stride = stride
1032
+ self.out_channels = (
1033
+ np.prod(stride) * in_channels // out_channels_reduction_factor
1034
+ )
1035
+ self.conv = make_conv_nd(
1036
+ dims=dims,
1037
+ in_channels=in_channels,
1038
+ out_channels=self.out_channels,
1039
+ kernel_size=3,
1040
+ stride=1,
1041
+ causal=True,
1042
+ spatial_padding_mode=spatial_padding_mode,
1043
+ )
1044
+ self.residual = residual
1045
+ self.out_channels_reduction_factor = out_channels_reduction_factor
1046
+
1047
+ def forward(self, x, causal: bool = True):
1048
+ if self.residual:
1049
+ # Reshape and duplicate the input to match the output shape
1050
+ x_in = rearrange(
1051
+ x,
1052
+ "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
1053
+ p1=self.stride[0],
1054
+ p2=self.stride[1],
1055
+ p3=self.stride[2],
1056
+ )
1057
+ num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor
1058
+ x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
1059
+ if self.stride[0] == 2:
1060
+ x_in = x_in[:, :, 1:, :, :]
1061
+ x = self.conv(x, causal=causal)
1062
+ x = rearrange(
1063
+ x,
1064
+ "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
1065
+ p1=self.stride[0],
1066
+ p2=self.stride[1],
1067
+ p3=self.stride[2],
1068
+ )
1069
+ if self.stride[0] == 2:
1070
+ x = x[:, :, 1:, :, :]
1071
+ if self.residual:
1072
+ x = x + x_in
1073
+ return x
1074
+
1075
+
1076
+ class LayerNorm(nn.Module):
1077
+ def __init__(self, dim, eps, elementwise_affine=True) -> None:
1078
+ super().__init__()
1079
+ self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine)
1080
+
1081
+ def forward(self, x):
1082
+ x = rearrange(x, "b c d h w -> b d h w c")
1083
+ x = self.norm(x)
1084
+ x = rearrange(x, "b d h w c -> b c d h w")
1085
+ return x
1086
+
1087
+
1088
+ class ResnetBlock3D(nn.Module):
1089
+ r"""
1090
+ A Resnet block.
1091
+
1092
+ Parameters:
1093
+ in_channels (`int`): The number of channels in the input.
1094
+ out_channels (`int`, *optional*, default to be `None`):
1095
+ The number of output channels for the first conv layer. If None, same as `in_channels`.
1096
+ dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
1097
+ groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
1098
+ eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
1099
+ """
1100
+
1101
+ def __init__(
1102
+ self,
1103
+ dims: Union[int, Tuple[int, int]],
1104
+ in_channels: int,
1105
+ out_channels: Optional[int] = None,
1106
+ dropout: float = 0.0,
1107
+ groups: int = 32,
1108
+ eps: float = 1e-6,
1109
+ norm_layer: str = "group_norm",
1110
+ inject_noise: bool = False,
1111
+ timestep_conditioning: bool = False,
1112
+ spatial_padding_mode: str = "zeros",
1113
+ ):
1114
+ super().__init__()
1115
+ self.in_channels = in_channels
1116
+ out_channels = in_channels if out_channels is None else out_channels
1117
+ self.out_channels = out_channels
1118
+ self.inject_noise = inject_noise
1119
+
1120
+ if norm_layer == "group_norm":
1121
+ self.norm1 = nn.GroupNorm(
1122
+ num_groups=groups, num_channels=in_channels, eps=eps, affine=True
1123
+ )
1124
+ elif norm_layer == "pixel_norm":
1125
+ self.norm1 = PixelNorm()
1126
+ elif norm_layer == "layer_norm":
1127
+ self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True)
1128
+
1129
+ self.non_linearity = nn.SiLU()
1130
+
1131
+ self.conv1 = make_conv_nd(
1132
+ dims,
1133
+ in_channels,
1134
+ out_channels,
1135
+ kernel_size=3,
1136
+ stride=1,
1137
+ padding=1,
1138
+ causal=True,
1139
+ spatial_padding_mode=spatial_padding_mode,
1140
+ )
1141
+
1142
+ if inject_noise:
1143
+ self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
1144
+
1145
+ if norm_layer == "group_norm":
1146
+ self.norm2 = nn.GroupNorm(
1147
+ num_groups=groups, num_channels=out_channels, eps=eps, affine=True
1148
+ )
1149
+ elif norm_layer == "pixel_norm":
1150
+ self.norm2 = PixelNorm()
1151
+ elif norm_layer == "layer_norm":
1152
+ self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True)
1153
+
1154
+ self.dropout = torch.nn.Dropout(dropout)
1155
+
1156
+ self.conv2 = make_conv_nd(
1157
+ dims,
1158
+ out_channels,
1159
+ out_channels,
1160
+ kernel_size=3,
1161
+ stride=1,
1162
+ padding=1,
1163
+ causal=True,
1164
+ spatial_padding_mode=spatial_padding_mode,
1165
+ )
1166
+
1167
+ if inject_noise:
1168
+ self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1)))
1169
+
1170
+ self.conv_shortcut = (
1171
+ make_linear_nd(
1172
+ dims=dims, in_channels=in_channels, out_channels=out_channels
1173
+ )
1174
+ if in_channels != out_channels
1175
+ else nn.Identity()
1176
+ )
1177
+
1178
+ self.norm3 = (
1179
+ LayerNorm(in_channels, eps=eps, elementwise_affine=True)
1180
+ if in_channels != out_channels
1181
+ else nn.Identity()
1182
+ )
1183
+
1184
+ self.timestep_conditioning = timestep_conditioning
1185
+
1186
+ if timestep_conditioning:
1187
+ self.scale_shift_table = nn.Parameter(
1188
+ torch.randn(4, in_channels) / in_channels**0.5
1189
+ )
1190
+
1191
+ def _feed_spatial_noise(
1192
+ self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
1193
+ ) -> torch.FloatTensor:
1194
+ spatial_shape = hidden_states.shape[-2:]
1195
+ device = hidden_states.device
1196
+ dtype = hidden_states.dtype
1197
+
1198
+ # similar to the "explicit noise inputs" method in style-gan
1199
+ spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None]
1200
+ scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...]
1201
+ hidden_states = hidden_states + scaled_noise
1202
+
1203
+ return hidden_states
1204
+
1205
+ def forward(
1206
+ self,
1207
+ input_tensor: torch.FloatTensor,
1208
+ causal: bool = True,
1209
+ timestep: Optional[torch.Tensor] = None,
1210
+ ) -> torch.FloatTensor:
1211
+ hidden_states = input_tensor
1212
+ batch_size = hidden_states.shape[0]
1213
+
1214
+ hidden_states = self.norm1(hidden_states)
1215
+ if self.timestep_conditioning:
1216
+ assert (
1217
+ timestep is not None
1218
+ ), "should pass timestep with timestep_conditioning=True"
1219
+ ada_values = self.scale_shift_table[
1220
+ None, ..., None, None, None
1221
+ ] + timestep.reshape(
1222
+ batch_size,
1223
+ 4,
1224
+ -1,
1225
+ timestep.shape[-3],
1226
+ timestep.shape[-2],
1227
+ timestep.shape[-1],
1228
+ )
1229
+ shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1)
1230
+
1231
+ hidden_states = hidden_states * (1 + scale1) + shift1
1232
+
1233
+ hidden_states = self.non_linearity(hidden_states)
1234
+
1235
+ hidden_states = self.conv1(hidden_states, causal=causal)
1236
+
1237
+ if self.inject_noise:
1238
+ hidden_states = self._feed_spatial_noise(
1239
+ hidden_states, self.per_channel_scale1
1240
+ )
1241
+
1242
+ hidden_states = self.norm2(hidden_states)
1243
+
1244
+ if self.timestep_conditioning:
1245
+ hidden_states = hidden_states * (1 + scale2) + shift2
1246
+
1247
+ hidden_states = self.non_linearity(hidden_states)
1248
+
1249
+ hidden_states = self.dropout(hidden_states)
1250
+
1251
+ hidden_states = self.conv2(hidden_states, causal=causal)
1252
+
1253
+ if self.inject_noise:
1254
+ hidden_states = self._feed_spatial_noise(
1255
+ hidden_states, self.per_channel_scale2
1256
+ )
1257
+
1258
+ input_tensor = self.norm3(input_tensor)
1259
+
1260
+ batch_size = input_tensor.shape[0]
1261
+
1262
+ input_tensor = self.conv_shortcut(input_tensor)
1263
+
1264
+ output_tensor = input_tensor + hidden_states
1265
+
1266
+ return output_tensor
1267
+
1268
+
1269
+ def patchify(x, patch_size_hw, patch_size_t=1):
1270
+ if patch_size_hw == 1 and patch_size_t == 1:
1271
+ return x
1272
+ if x.dim() == 4:
1273
+ x = rearrange(
1274
+ x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
1275
+ )
1276
+ elif x.dim() == 5:
1277
+ x = rearrange(
1278
+ x,
1279
+ "b c (f p) (h q) (w r) -> b (c p r q) f h w",
1280
+ p=patch_size_t,
1281
+ q=patch_size_hw,
1282
+ r=patch_size_hw,
1283
+ )
1284
+ else:
1285
+ raise ValueError(f"Invalid input shape: {x.shape}")
1286
+
1287
+ return x
1288
+
1289
+
1290
+ def unpatchify(x, patch_size_hw, patch_size_t=1):
1291
+ if patch_size_hw == 1 and patch_size_t == 1:
1292
+ return x
1293
+
1294
+ if x.dim() == 4:
1295
+ x = rearrange(
1296
+ x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
1297
+ )
1298
+ elif x.dim() == 5:
1299
+ x = rearrange(
1300
+ x,
1301
+ "b (c p r q) f h w -> b c (f p) (h q) (w r)",
1302
+ p=patch_size_t,
1303
+ q=patch_size_hw,
1304
+ r=patch_size_hw,
1305
+ )
1306
+
1307
+ return x
1308
+
1309
+
1310
+ def create_video_autoencoder_demo_config(
1311
+ latent_channels: int = 64,
1312
+ ):
1313
+ encoder_blocks = [
1314
+ ("res_x", {"num_layers": 2}),
1315
+ ("compress_space_res", {"multiplier": 2}),
1316
+ ("res_x", {"num_layers": 2}),
1317
+ ("compress_time_res", {"multiplier": 2}),
1318
+ ("res_x", {"num_layers": 1}),
1319
+ ("compress_all_res", {"multiplier": 2}),
1320
+ ("res_x", {"num_layers": 1}),
1321
+ ("compress_all_res", {"multiplier": 2}),
1322
+ ("res_x", {"num_layers": 1}),
1323
+ ]
1324
+ decoder_blocks = [
1325
+ ("res_x", {"num_layers": 2, "inject_noise": False}),
1326
+ ("compress_all", {"residual": True, "multiplier": 2}),
1327
+ ("res_x", {"num_layers": 2, "inject_noise": False}),
1328
+ ("compress_all", {"residual": True, "multiplier": 2}),
1329
+ ("res_x", {"num_layers": 2, "inject_noise": False}),
1330
+ ("compress_all", {"residual": True, "multiplier": 2}),
1331
+ ("res_x", {"num_layers": 2, "inject_noise": False}),
1332
+ ]
1333
+ return {
1334
+ "_class_name": "CausalVideoAutoencoder",
1335
+ "dims": 3,
1336
+ "encoder_blocks": encoder_blocks,
1337
+ "decoder_blocks": decoder_blocks,
1338
+ "latent_channels": latent_channels,
1339
+ "norm_layer": "pixel_norm",
1340
+ "patch_size": 4,
1341
+ "latent_log_var": "uniform",
1342
+ "use_quant_conv": False,
1343
+ "causal_decoder": False,
1344
+ "timestep_conditioning": True,
1345
+ "spatial_padding_mode": "replicate",
1346
+ }
1347
+
1348
+
1349
+ def test_vae_patchify_unpatchify():
1350
+ import torch
1351
+
1352
+ x = torch.randn(2, 3, 8, 64, 64)
1353
+ x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
1354
+ x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
1355
+ assert torch.allclose(x, x_unpatched)
1356
+
1357
+
1358
+ def demo_video_autoencoder_forward_backward():
1359
+ # Configuration for the VideoAutoencoder
1360
+ config = create_video_autoencoder_demo_config()
1361
+
1362
+ # Instantiate the VideoAutoencoder with the specified configuration
1363
+ video_autoencoder = CausalVideoAutoencoder.from_config(config)
1364
+
1365
+ print(video_autoencoder)
1366
+ video_autoencoder.eval()
1367
+ # Print the total number of parameters in the video autoencoder
1368
+ total_params = sum(p.numel() for p in video_autoencoder.parameters())
1369
+ print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
1370
+
1371
+ # Create a mock input tensor simulating a batch of videos
1372
+ # Shape: (batch_size, channels, depth, height, width)
1373
+ # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
1374
+ input_videos = torch.randn(2, 3, 17, 64, 64)
1375
+
1376
+ # Forward pass: encode and decode the input videos
1377
+ latent = video_autoencoder.encode(input_videos).latent_dist.mode()
1378
+ print(f"input shape={input_videos.shape}")
1379
+ print(f"latent shape={latent.shape}")
1380
+
1381
+ timestep = torch.ones(input_videos.shape[0]) * 0.1
1382
+ reconstructed_videos = video_autoencoder.decode(
1383
+ latent, target_shape=input_videos.shape, timestep=timestep
1384
+ ).sample
1385
+
1386
+ print(f"reconstructed shape={reconstructed_videos.shape}")
1387
+
1388
+ # Validate that single image gets treated the same way as first frame
1389
+ input_image = input_videos[:, :, :1, :, :]
1390
+ image_latent = video_autoencoder.encode(input_image).latent_dist.mode()
1391
+ _ = video_autoencoder.decode(
1392
+ image_latent, target_shape=image_latent.shape, timestep=timestep
1393
+ ).sample
1394
+
1395
+ first_frame_latent = latent[:, :, :1, :, :]
1396
+
1397
+ assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
1398
+ # assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6)
1399
+ # assert torch.allclose(image_latent, first_frame_latent, atol=1e-6)
1400
+ # assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all()
1401
+
1402
+ # Calculate the loss (e.g., mean squared error)
1403
+ loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
1404
+
1405
+ # Perform backward pass
1406
+ loss.backward()
1407
+
1408
+ print(f"Demo completed with loss: {loss.item()}")
1409
+
1410
+
1411
+ # Ensure to call the demo function to execute the forward and backward pass
1412
+ if __name__ == "__main__":
1413
+ demo_video_autoencoder_forward_backward()
ltx_video/models/autoencoders/conv_nd_factory.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, Union
2
+
3
+ import torch
4
+
5
+ from ltx_video.models.autoencoders.dual_conv3d import DualConv3d
6
+ from ltx_video.models.autoencoders.causal_conv3d import CausalConv3d
7
+
8
+
9
+ def make_conv_nd(
10
+ dims: Union[int, Tuple[int, int]],
11
+ in_channels: int,
12
+ out_channels: int,
13
+ kernel_size: int,
14
+ stride=1,
15
+ padding=0,
16
+ dilation=1,
17
+ groups=1,
18
+ bias=True,
19
+ causal=False,
20
+ spatial_padding_mode="zeros",
21
+ temporal_padding_mode="zeros",
22
+ ):
23
+ if not (spatial_padding_mode == temporal_padding_mode or causal):
24
+ raise NotImplementedError("spatial and temporal padding modes must be equal")
25
+ if dims == 2:
26
+ return torch.nn.Conv2d(
27
+ in_channels=in_channels,
28
+ out_channels=out_channels,
29
+ kernel_size=kernel_size,
30
+ stride=stride,
31
+ padding=padding,
32
+ dilation=dilation,
33
+ groups=groups,
34
+ bias=bias,
35
+ padding_mode=spatial_padding_mode,
36
+ )
37
+ elif dims == 3:
38
+ if causal:
39
+ return CausalConv3d(
40
+ in_channels=in_channels,
41
+ out_channels=out_channels,
42
+ kernel_size=kernel_size,
43
+ stride=stride,
44
+ padding=padding,
45
+ dilation=dilation,
46
+ groups=groups,
47
+ bias=bias,
48
+ spatial_padding_mode=spatial_padding_mode,
49
+ )
50
+ return torch.nn.Conv3d(
51
+ in_channels=in_channels,
52
+ out_channels=out_channels,
53
+ kernel_size=kernel_size,
54
+ stride=stride,
55
+ padding=padding,
56
+ dilation=dilation,
57
+ groups=groups,
58
+ bias=bias,
59
+ padding_mode=spatial_padding_mode,
60
+ )
61
+ elif dims == (2, 1):
62
+ return DualConv3d(
63
+ in_channels=in_channels,
64
+ out_channels=out_channels,
65
+ kernel_size=kernel_size,
66
+ stride=stride,
67
+ padding=padding,
68
+ bias=bias,
69
+ padding_mode=spatial_padding_mode,
70
+ )
71
+ else:
72
+ raise ValueError(f"unsupported dimensions: {dims}")
73
+
74
+
75
+ def make_linear_nd(
76
+ dims: int,
77
+ in_channels: int,
78
+ out_channels: int,
79
+ bias=True,
80
+ ):
81
+ if dims == 2:
82
+ return torch.nn.Conv2d(
83
+ in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
84
+ )
85
+ elif dims == 3 or dims == (2, 1):
86
+ return torch.nn.Conv3d(
87
+ in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias
88
+ )
89
+ else:
90
+ raise ValueError(f"unsupported dimensions: {dims}")
ltx_video/models/autoencoders/dual_conv3d.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Tuple, Union
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+ from einops import rearrange
8
+
9
+
10
+ class DualConv3d(nn.Module):
11
+ def __init__(
12
+ self,
13
+ in_channels,
14
+ out_channels,
15
+ kernel_size,
16
+ stride: Union[int, Tuple[int, int, int]] = 1,
17
+ padding: Union[int, Tuple[int, int, int]] = 0,
18
+ dilation: Union[int, Tuple[int, int, int]] = 1,
19
+ groups=1,
20
+ bias=True,
21
+ padding_mode="zeros",
22
+ ):
23
+ super(DualConv3d, self).__init__()
24
+
25
+ self.in_channels = in_channels
26
+ self.out_channels = out_channels
27
+ self.padding_mode = padding_mode
28
+ # Ensure kernel_size, stride, padding, and dilation are tuples of length 3
29
+ if isinstance(kernel_size, int):
30
+ kernel_size = (kernel_size, kernel_size, kernel_size)
31
+ if kernel_size == (1, 1, 1):
32
+ raise ValueError(
33
+ "kernel_size must be greater than 1. Use make_linear_nd instead."
34
+ )
35
+ if isinstance(stride, int):
36
+ stride = (stride, stride, stride)
37
+ if isinstance(padding, int):
38
+ padding = (padding, padding, padding)
39
+ if isinstance(dilation, int):
40
+ dilation = (dilation, dilation, dilation)
41
+
42
+ # Set parameters for convolutions
43
+ self.groups = groups
44
+ self.bias = bias
45
+
46
+ # Define the size of the channels after the first convolution
47
+ intermediate_channels = (
48
+ out_channels if in_channels < out_channels else in_channels
49
+ )
50
+
51
+ # Define parameters for the first convolution
52
+ self.weight1 = nn.Parameter(
53
+ torch.Tensor(
54
+ intermediate_channels,
55
+ in_channels // groups,
56
+ 1,
57
+ kernel_size[1],
58
+ kernel_size[2],
59
+ )
60
+ )
61
+ self.stride1 = (1, stride[1], stride[2])
62
+ self.padding1 = (0, padding[1], padding[2])
63
+ self.dilation1 = (1, dilation[1], dilation[2])
64
+ if bias:
65
+ self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels))
66
+ else:
67
+ self.register_parameter("bias1", None)
68
+
69
+ # Define parameters for the second convolution
70
+ self.weight2 = nn.Parameter(
71
+ torch.Tensor(
72
+ out_channels, intermediate_channels // groups, kernel_size[0], 1, 1
73
+ )
74
+ )
75
+ self.stride2 = (stride[0], 1, 1)
76
+ self.padding2 = (padding[0], 0, 0)
77
+ self.dilation2 = (dilation[0], 1, 1)
78
+ if bias:
79
+ self.bias2 = nn.Parameter(torch.Tensor(out_channels))
80
+ else:
81
+ self.register_parameter("bias2", None)
82
+
83
+ # Initialize weights and biases
84
+ self.reset_parameters()
85
+
86
+ def reset_parameters(self):
87
+ nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5))
88
+ nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5))
89
+ if self.bias:
90
+ fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1)
91
+ bound1 = 1 / math.sqrt(fan_in1)
92
+ nn.init.uniform_(self.bias1, -bound1, bound1)
93
+ fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2)
94
+ bound2 = 1 / math.sqrt(fan_in2)
95
+ nn.init.uniform_(self.bias2, -bound2, bound2)
96
+
97
+ def forward(self, x, use_conv3d=False, skip_time_conv=False):
98
+ if use_conv3d:
99
+ return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv)
100
+ else:
101
+ return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv)
102
+
103
+ def forward_with_3d(self, x, skip_time_conv):
104
+ # First convolution
105
+ x = F.conv3d(
106
+ x,
107
+ self.weight1,
108
+ self.bias1,
109
+ self.stride1,
110
+ self.padding1,
111
+ self.dilation1,
112
+ self.groups,
113
+ padding_mode=self.padding_mode,
114
+ )
115
+
116
+ if skip_time_conv:
117
+ return x
118
+
119
+ # Second convolution
120
+ x = F.conv3d(
121
+ x,
122
+ self.weight2,
123
+ self.bias2,
124
+ self.stride2,
125
+ self.padding2,
126
+ self.dilation2,
127
+ self.groups,
128
+ padding_mode=self.padding_mode,
129
+ )
130
+
131
+ return x
132
+
133
+ def forward_with_2d(self, x, skip_time_conv):
134
+ b, c, d, h, w = x.shape
135
+
136
+ # First 2D convolution
137
+ x = rearrange(x, "b c d h w -> (b d) c h w")
138
+ # Squeeze the depth dimension out of weight1 since it's 1
139
+ weight1 = self.weight1.squeeze(2)
140
+ # Select stride, padding, and dilation for the 2D convolution
141
+ stride1 = (self.stride1[1], self.stride1[2])
142
+ padding1 = (self.padding1[1], self.padding1[2])
143
+ dilation1 = (self.dilation1[1], self.dilation1[2])
144
+ x = F.conv2d(
145
+ x,
146
+ weight1,
147
+ self.bias1,
148
+ stride1,
149
+ padding1,
150
+ dilation1,
151
+ self.groups,
152
+ padding_mode=self.padding_mode,
153
+ )
154
+
155
+ _, _, h, w = x.shape
156
+
157
+ if skip_time_conv:
158
+ x = rearrange(x, "(b d) c h w -> b c d h w", b=b)
159
+ return x
160
+
161
+ # Second convolution which is essentially treated as a 1D convolution across the 'd' dimension
162
+ x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b)
163
+
164
+ # Reshape weight2 to match the expected dimensions for conv1d
165
+ weight2 = self.weight2.squeeze(-1).squeeze(-1)
166
+ # Use only the relevant dimension for stride, padding, and dilation for the 1D convolution
167
+ stride2 = self.stride2[0]
168
+ padding2 = self.padding2[0]
169
+ dilation2 = self.dilation2[0]
170
+ x = F.conv1d(
171
+ x,
172
+ weight2,
173
+ self.bias2,
174
+ stride2,
175
+ padding2,
176
+ dilation2,
177
+ self.groups,
178
+ padding_mode=self.padding_mode,
179
+ )
180
+ x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w)
181
+
182
+ return x
183
+
184
+ @property
185
+ def weight(self):
186
+ return self.weight2
187
+
188
+
189
+ def test_dual_conv3d_consistency():
190
+ # Initialize parameters
191
+ in_channels = 3
192
+ out_channels = 5
193
+ kernel_size = (3, 3, 3)
194
+ stride = (2, 2, 2)
195
+ padding = (1, 1, 1)
196
+
197
+ # Create an instance of the DualConv3d class
198
+ dual_conv3d = DualConv3d(
199
+ in_channels=in_channels,
200
+ out_channels=out_channels,
201
+ kernel_size=kernel_size,
202
+ stride=stride,
203
+ padding=padding,
204
+ bias=True,
205
+ )
206
+
207
+ # Example input tensor
208
+ test_input = torch.randn(1, 3, 10, 10, 10)
209
+
210
+ # Perform forward passes with both 3D and 2D settings
211
+ output_conv3d = dual_conv3d(test_input, use_conv3d=True)
212
+ output_2d = dual_conv3d(test_input, use_conv3d=False)
213
+
214
+ # Assert that the outputs from both methods are sufficiently close
215
+ assert torch.allclose(
216
+ output_conv3d, output_2d, atol=1e-6
217
+ ), "Outputs are not consistent between 3D and 2D convolutions."
ltx_video/models/autoencoders/pixel_norm.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class PixelNorm(nn.Module):
6
+ def __init__(self, dim=1, eps=1e-8):
7
+ super(PixelNorm, self).__init__()
8
+ self.dim = dim
9
+ self.eps = eps
10
+
11
+ def forward(self, x):
12
+ return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps)
ltx_video/models/autoencoders/vae.py ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union
2
+
3
+ import torch
4
+ import inspect
5
+ import math
6
+ import torch.nn as nn
7
+ from diffusers import ConfigMixin, ModelMixin
8
+ from diffusers.models.autoencoders.vae import (
9
+ DecoderOutput,
10
+ DiagonalGaussianDistribution,
11
+ )
12
+ from diffusers.models.modeling_outputs import AutoencoderKLOutput
13
+ from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd
14
+
15
+
16
+ class AutoencoderKLWrapper(ModelMixin, ConfigMixin):
17
+ """Variational Autoencoder (VAE) model with KL loss.
18
+
19
+ VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling.
20
+ This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss.
21
+
22
+ Args:
23
+ encoder (`nn.Module`):
24
+ Encoder module.
25
+ decoder (`nn.Module`):
26
+ Decoder module.
27
+ latent_channels (`int`, *optional*, defaults to 4):
28
+ Number of latent channels.
29
+ """
30
+
31
+ def __init__(
32
+ self,
33
+ encoder: nn.Module,
34
+ decoder: nn.Module,
35
+ latent_channels: int = 4,
36
+ dims: int = 2,
37
+ sample_size=512,
38
+ use_quant_conv: bool = True,
39
+ normalize_latent_channels: bool = False,
40
+ ):
41
+ super().__init__()
42
+
43
+ # pass init params to Encoder
44
+ self.encoder = encoder
45
+ self.use_quant_conv = use_quant_conv
46
+ self.normalize_latent_channels = normalize_latent_channels
47
+
48
+ # pass init params to Decoder
49
+ quant_dims = 2 if dims == 2 else 3
50
+ self.decoder = decoder
51
+ if use_quant_conv:
52
+ self.quant_conv = make_conv_nd(
53
+ quant_dims, 2 * latent_channels, 2 * latent_channels, 1
54
+ )
55
+ self.post_quant_conv = make_conv_nd(
56
+ quant_dims, latent_channels, latent_channels, 1
57
+ )
58
+ else:
59
+ self.quant_conv = nn.Identity()
60
+ self.post_quant_conv = nn.Identity()
61
+
62
+ if normalize_latent_channels:
63
+ if dims == 2:
64
+ self.latent_norm_out = nn.BatchNorm2d(latent_channels, affine=False)
65
+ else:
66
+ self.latent_norm_out = nn.BatchNorm3d(latent_channels, affine=False)
67
+ else:
68
+ self.latent_norm_out = nn.Identity()
69
+ self.use_z_tiling = False
70
+ self.use_hw_tiling = False
71
+ self.dims = dims
72
+ self.z_sample_size = 1
73
+
74
+ self.decoder_params = inspect.signature(self.decoder.forward).parameters
75
+
76
+ # only relevant if vae tiling is enabled
77
+ self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25)
78
+
79
+ def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25):
80
+ self.tile_sample_min_size = sample_size
81
+ num_blocks = len(self.encoder.down_blocks)
82
+ self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1)))
83
+ self.tile_overlap_factor = overlap_factor
84
+
85
+ def enable_z_tiling(self, z_sample_size: int = 8):
86
+ r"""
87
+ Enable tiling during VAE decoding.
88
+
89
+ When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several
90
+ steps. This is useful to save some memory and allow larger batch sizes.
91
+ """
92
+ self.use_z_tiling = z_sample_size > 1
93
+ self.z_sample_size = z_sample_size
94
+ assert (
95
+ z_sample_size % 8 == 0 or z_sample_size == 1
96
+ ), f"z_sample_size must be a multiple of 8 or 1. Got {z_sample_size}."
97
+
98
+ def disable_z_tiling(self):
99
+ r"""
100
+ Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing
101
+ decoding in one step.
102
+ """
103
+ self.use_z_tiling = False
104
+
105
+ def enable_hw_tiling(self):
106
+ r"""
107
+ Enable tiling during VAE decoding along the height and width dimension.
108
+ """
109
+ self.use_hw_tiling = True
110
+
111
+ def disable_hw_tiling(self):
112
+ r"""
113
+ Disable tiling during VAE decoding along the height and width dimension.
114
+ """
115
+ self.use_hw_tiling = False
116
+
117
+ def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True):
118
+ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
119
+ blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
120
+ row_limit = self.tile_latent_min_size - blend_extent
121
+
122
+ # Split the image into 512x512 tiles and encode them separately.
123
+ rows = []
124
+ for i in range(0, x.shape[3], overlap_size):
125
+ row = []
126
+ for j in range(0, x.shape[4], overlap_size):
127
+ tile = x[
128
+ :,
129
+ :,
130
+ :,
131
+ i : i + self.tile_sample_min_size,
132
+ j : j + self.tile_sample_min_size,
133
+ ]
134
+ tile = self.encoder(tile)
135
+ tile = self.quant_conv(tile)
136
+ row.append(tile)
137
+ rows.append(row)
138
+ result_rows = []
139
+ for i, row in enumerate(rows):
140
+ result_row = []
141
+ for j, tile in enumerate(row):
142
+ # blend the above tile and the left tile
143
+ # to the current tile and add the current tile to the result row
144
+ if i > 0:
145
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
146
+ if j > 0:
147
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
148
+ result_row.append(tile[:, :, :, :row_limit, :row_limit])
149
+ result_rows.append(torch.cat(result_row, dim=4))
150
+
151
+ moments = torch.cat(result_rows, dim=3)
152
+ return moments
153
+
154
+ def blend_z(
155
+ self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
156
+ ) -> torch.Tensor:
157
+ blend_extent = min(a.shape[2], b.shape[2], blend_extent)
158
+ for z in range(blend_extent):
159
+ b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * (
160
+ 1 - z / blend_extent
161
+ ) + b[:, :, z, :, :] * (z / blend_extent)
162
+ return b
163
+
164
+ def blend_v(
165
+ self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
166
+ ) -> torch.Tensor:
167
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
168
+ for y in range(blend_extent):
169
+ b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
170
+ 1 - y / blend_extent
171
+ ) + b[:, :, :, y, :] * (y / blend_extent)
172
+ return b
173
+
174
+ def blend_h(
175
+ self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
176
+ ) -> torch.Tensor:
177
+ blend_extent = min(a.shape[4], b.shape[4], blend_extent)
178
+ for x in range(blend_extent):
179
+ b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
180
+ 1 - x / blend_extent
181
+ ) + b[:, :, :, :, x] * (x / blend_extent)
182
+ return b
183
+
184
+ def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape):
185
+ overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
186
+ blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
187
+ row_limit = self.tile_sample_min_size - blend_extent
188
+ tile_target_shape = (
189
+ *target_shape[:3],
190
+ self.tile_sample_min_size,
191
+ self.tile_sample_min_size,
192
+ )
193
+ # Split z into overlapping 64x64 tiles and decode them separately.
194
+ # The tiles have an overlap to avoid seams between tiles.
195
+ rows = []
196
+ for i in range(0, z.shape[3], overlap_size):
197
+ row = []
198
+ for j in range(0, z.shape[4], overlap_size):
199
+ tile = z[
200
+ :,
201
+ :,
202
+ :,
203
+ i : i + self.tile_latent_min_size,
204
+ j : j + self.tile_latent_min_size,
205
+ ]
206
+ tile = self.post_quant_conv(tile)
207
+ decoded = self.decoder(tile, target_shape=tile_target_shape)
208
+ row.append(decoded)
209
+ rows.append(row)
210
+ result_rows = []
211
+ for i, row in enumerate(rows):
212
+ result_row = []
213
+ for j, tile in enumerate(row):
214
+ # blend the above tile and the left tile
215
+ # to the current tile and add the current tile to the result row
216
+ if i > 0:
217
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
218
+ if j > 0:
219
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
220
+ result_row.append(tile[:, :, :, :row_limit, :row_limit])
221
+ result_rows.append(torch.cat(result_row, dim=4))
222
+
223
+ dec = torch.cat(result_rows, dim=3)
224
+ return dec
225
+
226
+ def encode(
227
+ self, z: torch.FloatTensor, return_dict: bool = True
228
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
229
+ if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
230
+ num_splits = z.shape[2] // self.z_sample_size
231
+ sizes = [self.z_sample_size] * num_splits
232
+ sizes = (
233
+ sizes + [z.shape[2] - sum(sizes)]
234
+ if z.shape[2] - sum(sizes) > 0
235
+ else sizes
236
+ )
237
+ tiles = z.split(sizes, dim=2)
238
+ moments_tiles = [
239
+ (
240
+ self._hw_tiled_encode(z_tile, return_dict)
241
+ if self.use_hw_tiling
242
+ else self._encode(z_tile)
243
+ )
244
+ for z_tile in tiles
245
+ ]
246
+ moments = torch.cat(moments_tiles, dim=2)
247
+
248
+ else:
249
+ moments = (
250
+ self._hw_tiled_encode(z, return_dict)
251
+ if self.use_hw_tiling
252
+ else self._encode(z)
253
+ )
254
+
255
+ posterior = DiagonalGaussianDistribution(moments)
256
+ if not return_dict:
257
+ return (posterior,)
258
+
259
+ return AutoencoderKLOutput(latent_dist=posterior)
260
+
261
+ def _normalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor:
262
+ if isinstance(self.latent_norm_out, nn.BatchNorm3d):
263
+ _, c, _, _, _ = z.shape
264
+ z = torch.cat(
265
+ [
266
+ self.latent_norm_out(z[:, : c // 2, :, :, :]),
267
+ z[:, c // 2 :, :, :, :],
268
+ ],
269
+ dim=1,
270
+ )
271
+ elif isinstance(self.latent_norm_out, nn.BatchNorm2d):
272
+ raise NotImplementedError("BatchNorm2d not supported")
273
+ return z
274
+
275
+ def _unnormalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor:
276
+ if isinstance(self.latent_norm_out, nn.BatchNorm3d):
277
+ running_mean = self.latent_norm_out.running_mean.view(1, -1, 1, 1, 1)
278
+ running_var = self.latent_norm_out.running_var.view(1, -1, 1, 1, 1)
279
+ eps = self.latent_norm_out.eps
280
+
281
+ z = z * torch.sqrt(running_var + eps) + running_mean
282
+ elif isinstance(self.latent_norm_out, nn.BatchNorm3d):
283
+ raise NotImplementedError("BatchNorm2d not supported")
284
+ return z
285
+
286
+ def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput:
287
+ h = self.encoder(x)
288
+ moments = self.quant_conv(h)
289
+ moments = self._normalize_latent_channels(moments)
290
+ return moments
291
+
292
+ def _decode(
293
+ self,
294
+ z: torch.FloatTensor,
295
+ target_shape=None,
296
+ timestep: Optional[torch.Tensor] = None,
297
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
298
+ z = self._unnormalize_latent_channels(z)
299
+ z = self.post_quant_conv(z)
300
+ if "timestep" in self.decoder_params:
301
+ dec = self.decoder(z, target_shape=target_shape, timestep=timestep)
302
+ else:
303
+ dec = self.decoder(z, target_shape=target_shape)
304
+ return dec
305
+
306
+ def decode(
307
+ self,
308
+ z: torch.FloatTensor,
309
+ return_dict: bool = True,
310
+ target_shape=None,
311
+ timestep: Optional[torch.Tensor] = None,
312
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
313
+ assert target_shape is not None, "target_shape must be provided for decoding"
314
+ if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1:
315
+ reduction_factor = int(
316
+ self.encoder.patch_size_t
317
+ * 2
318
+ ** (
319
+ len(self.encoder.down_blocks)
320
+ - 1
321
+ - math.sqrt(self.encoder.patch_size)
322
+ )
323
+ )
324
+ split_size = self.z_sample_size // reduction_factor
325
+ num_splits = z.shape[2] // split_size
326
+
327
+ # copy target shape, and divide frame dimension (=2) by the context size
328
+ target_shape_split = list(target_shape)
329
+ target_shape_split[2] = target_shape[2] // num_splits
330
+
331
+ decoded_tiles = [
332
+ (
333
+ self._hw_tiled_decode(z_tile, target_shape_split)
334
+ if self.use_hw_tiling
335
+ else self._decode(z_tile, target_shape=target_shape_split)
336
+ )
337
+ for z_tile in torch.tensor_split(z, num_splits, dim=2)
338
+ ]
339
+ decoded = torch.cat(decoded_tiles, dim=2)
340
+ else:
341
+ decoded = (
342
+ self._hw_tiled_decode(z, target_shape)
343
+ if self.use_hw_tiling
344
+ else self._decode(z, target_shape=target_shape, timestep=timestep)
345
+ )
346
+
347
+ if not return_dict:
348
+ return (decoded,)
349
+
350
+ return DecoderOutput(sample=decoded)
351
+
352
+ def forward(
353
+ self,
354
+ sample: torch.FloatTensor,
355
+ sample_posterior: bool = False,
356
+ return_dict: bool = True,
357
+ generator: Optional[torch.Generator] = None,
358
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
359
+ r"""
360
+ Args:
361
+ sample (`torch.FloatTensor`): Input sample.
362
+ sample_posterior (`bool`, *optional*, defaults to `False`):
363
+ Whether to sample from the posterior.
364
+ return_dict (`bool`, *optional*, defaults to `True`):
365
+ Whether to return a [`DecoderOutput`] instead of a plain tuple.
366
+ generator (`torch.Generator`, *optional*):
367
+ Generator used to sample from the posterior.
368
+ """
369
+ x = sample
370
+ posterior = self.encode(x).latent_dist
371
+ if sample_posterior:
372
+ z = posterior.sample(generator=generator)
373
+ else:
374
+ z = posterior.mode()
375
+ dec = self.decode(z, target_shape=sample.shape).sample
376
+
377
+ if not return_dict:
378
+ return (dec,)
379
+
380
+ return DecoderOutput(sample=dec)
ltx_video/models/autoencoders/vae_encode.py ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple
2
+ import torch
3
+ from diffusers import AutoencoderKL
4
+ from einops import rearrange
5
+ from torch import Tensor
6
+
7
+
8
+ from ltx_video.models.autoencoders.causal_video_autoencoder import (
9
+ CausalVideoAutoencoder,
10
+ )
11
+ from ltx_video.models.autoencoders.video_autoencoder import (
12
+ Downsample3D,
13
+ VideoAutoencoder,
14
+ )
15
+
16
+ try:
17
+ import torch_xla.core.xla_model as xm
18
+ except ImportError:
19
+ xm = None
20
+
21
+
22
+ def vae_encode(
23
+ media_items: Tensor,
24
+ vae: AutoencoderKL,
25
+ split_size: int = 1,
26
+ vae_per_channel_normalize=False,
27
+ ) -> Tensor:
28
+ """
29
+ Encodes media items (images or videos) into latent representations using a specified VAE model.
30
+ The function supports processing batches of images or video frames and can handle the processing
31
+ in smaller sub-batches if needed.
32
+
33
+ Args:
34
+ media_items (Tensor): A torch Tensor containing the media items to encode. The expected
35
+ shape is (batch_size, channels, height, width) for images or (batch_size, channels,
36
+ frames, height, width) for videos.
37
+ vae (AutoencoderKL): An instance of the `AutoencoderKL` class from the `diffusers` library,
38
+ pre-configured and loaded with the appropriate model weights.
39
+ split_size (int, optional): The number of sub-batches to split the input batch into for encoding.
40
+ If set to more than 1, the input media items are processed in smaller batches according to
41
+ this value. Defaults to 1, which processes all items in a single batch.
42
+
43
+ Returns:
44
+ Tensor: A torch Tensor of the encoded latent representations. The shape of the tensor is adjusted
45
+ to match the input shape, scaled by the model's configuration.
46
+
47
+ Examples:
48
+ >>> import torch
49
+ >>> from diffusers import AutoencoderKL
50
+ >>> vae = AutoencoderKL.from_pretrained('your-model-name')
51
+ >>> images = torch.rand(10, 3, 8 256, 256) # Example tensor with 10 videos of 8 frames.
52
+ >>> latents = vae_encode(images, vae)
53
+ >>> print(latents.shape) # Output shape will depend on the model's latent configuration.
54
+
55
+ Note:
56
+ In case of a video, the function encodes the media item frame-by frame.
57
+ """
58
+ is_video_shaped = media_items.dim() == 5
59
+ batch_size, channels = media_items.shape[0:2]
60
+
61
+ if channels != 3:
62
+ raise ValueError(f"Expects tensors with 3 channels, got {channels}.")
63
+
64
+ if is_video_shaped and not isinstance(
65
+ vae, (VideoAutoencoder, CausalVideoAutoencoder)
66
+ ):
67
+ media_items = rearrange(media_items, "b c n h w -> (b n) c h w")
68
+ if split_size > 1:
69
+ if len(media_items) % split_size != 0:
70
+ raise ValueError(
71
+ "Error: The batch size must be divisible by 'train.vae_bs_split"
72
+ )
73
+ encode_bs = len(media_items) // split_size
74
+ # latents = [vae.encode(image_batch).latent_dist.sample() for image_batch in media_items.split(encode_bs)]
75
+ latents = []
76
+ if media_items.device.type == "xla":
77
+ xm.mark_step()
78
+ for image_batch in media_items.split(encode_bs):
79
+ latents.append(vae.encode(image_batch).latent_dist.sample())
80
+ if media_items.device.type == "xla":
81
+ xm.mark_step()
82
+ latents = torch.cat(latents, dim=0)
83
+ else:
84
+ latents = vae.encode(media_items).latent_dist.sample()
85
+
86
+ latents = normalize_latents(latents, vae, vae_per_channel_normalize)
87
+ if is_video_shaped and not isinstance(
88
+ vae, (VideoAutoencoder, CausalVideoAutoencoder)
89
+ ):
90
+ latents = rearrange(latents, "(b n) c h w -> b c n h w", b=batch_size)
91
+ return latents
92
+
93
+
94
+ def vae_decode(
95
+ latents: Tensor,
96
+ vae: AutoencoderKL,
97
+ is_video: bool = True,
98
+ split_size: int = 1,
99
+ vae_per_channel_normalize=False,
100
+ timestep=None,
101
+ ) -> Tensor:
102
+ is_video_shaped = latents.dim() == 5
103
+ batch_size = latents.shape[0]
104
+
105
+ if is_video_shaped and not isinstance(
106
+ vae, (VideoAutoencoder, CausalVideoAutoencoder)
107
+ ):
108
+ latents = rearrange(latents, "b c n h w -> (b n) c h w")
109
+ if split_size > 1:
110
+ if len(latents) % split_size != 0:
111
+ raise ValueError(
112
+ "Error: The batch size must be divisible by 'train.vae_bs_split"
113
+ )
114
+ encode_bs = len(latents) // split_size
115
+ image_batch = [
116
+ _run_decoder(
117
+ latent_batch, vae, is_video, vae_per_channel_normalize, timestep
118
+ )
119
+ for latent_batch in latents.split(encode_bs)
120
+ ]
121
+ images = torch.cat(image_batch, dim=0)
122
+ else:
123
+ images = _run_decoder(
124
+ latents, vae, is_video, vae_per_channel_normalize, timestep
125
+ )
126
+
127
+ if is_video_shaped and not isinstance(
128
+ vae, (VideoAutoencoder, CausalVideoAutoencoder)
129
+ ):
130
+ images = rearrange(images, "(b n) c h w -> b c n h w", b=batch_size)
131
+ return images
132
+
133
+
134
+ def _run_decoder(
135
+ latents: Tensor,
136
+ vae: AutoencoderKL,
137
+ is_video: bool,
138
+ vae_per_channel_normalize=False,
139
+ timestep=None,
140
+ ) -> Tensor:
141
+ if isinstance(vae, (VideoAutoencoder, CausalVideoAutoencoder)):
142
+ *_, fl, hl, wl = latents.shape
143
+ temporal_scale, spatial_scale, _ = get_vae_size_scale_factor(vae)
144
+ latents = latents.to(vae.dtype)
145
+ vae_decode_kwargs = {}
146
+ if timestep is not None:
147
+ vae_decode_kwargs["timestep"] = timestep
148
+ image = vae.decode(
149
+ un_normalize_latents(latents, vae, vae_per_channel_normalize),
150
+ return_dict=False,
151
+ target_shape=(
152
+ 1,
153
+ 3,
154
+ fl * temporal_scale if is_video else 1,
155
+ hl * spatial_scale,
156
+ wl * spatial_scale,
157
+ ),
158
+ **vae_decode_kwargs,
159
+ )[0]
160
+ else:
161
+ image = vae.decode(
162
+ un_normalize_latents(latents, vae, vae_per_channel_normalize),
163
+ return_dict=False,
164
+ )[0]
165
+ return image
166
+
167
+
168
+ def get_vae_size_scale_factor(vae: AutoencoderKL) -> float:
169
+ if isinstance(vae, CausalVideoAutoencoder):
170
+ spatial = vae.spatial_downscale_factor
171
+ temporal = vae.temporal_downscale_factor
172
+ else:
173
+ down_blocks = len(
174
+ [
175
+ block
176
+ for block in vae.encoder.down_blocks
177
+ if isinstance(block.downsample, Downsample3D)
178
+ ]
179
+ )
180
+ spatial = vae.config.patch_size * 2**down_blocks
181
+ temporal = (
182
+ vae.config.patch_size_t * 2**down_blocks
183
+ if isinstance(vae, VideoAutoencoder)
184
+ else 1
185
+ )
186
+
187
+ return (temporal, spatial, spatial)
188
+
189
+
190
+ def latent_to_pixel_coords(
191
+ latent_coords: Tensor, vae: AutoencoderKL, causal_fix: bool = False
192
+ ) -> Tensor:
193
+ """
194
+ Converts latent coordinates to pixel coordinates by scaling them according to the VAE's
195
+ configuration.
196
+
197
+ Args:
198
+ latent_coords (Tensor): A tensor of shape [batch_size, 3, num_latents]
199
+ containing the latent corner coordinates of each token.
200
+ vae (AutoencoderKL): The VAE model
201
+ causal_fix (bool): Whether to take into account the different temporal scale
202
+ of the first frame. Default = False for backwards compatibility.
203
+ Returns:
204
+ Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
205
+ """
206
+
207
+ scale_factors = get_vae_size_scale_factor(vae)
208
+ causal_fix = isinstance(vae, CausalVideoAutoencoder) and causal_fix
209
+ pixel_coords = latent_to_pixel_coords_from_factors(
210
+ latent_coords, scale_factors, causal_fix
211
+ )
212
+ return pixel_coords
213
+
214
+
215
+ def latent_to_pixel_coords_from_factors(
216
+ latent_coords: Tensor, scale_factors: Tuple, causal_fix: bool = False
217
+ ) -> Tensor:
218
+ pixel_coords = (
219
+ latent_coords
220
+ * torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
221
+ )
222
+ if causal_fix:
223
+ # Fix temporal scale for first frame to 1 due to causality
224
+ pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
225
+ return pixel_coords
226
+
227
+
228
+ def normalize_latents(
229
+ latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False
230
+ ) -> Tensor:
231
+ return (
232
+ (latents - vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1))
233
+ / vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
234
+ if vae_per_channel_normalize
235
+ else latents * vae.config.scaling_factor
236
+ )
237
+
238
+
239
+ def un_normalize_latents(
240
+ latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False
241
+ ) -> Tensor:
242
+ return (
243
+ latents * vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
244
+ + vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)
245
+ if vae_per_channel_normalize
246
+ else latents / vae.config.scaling_factor
247
+ )
ltx_video/models/autoencoders/video_autoencoder.py ADDED
@@ -0,0 +1,1045 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from functools import partial
4
+ from types import SimpleNamespace
5
+ from typing import Any, Mapping, Optional, Tuple, Union
6
+
7
+ import torch
8
+ from einops import rearrange
9
+ from torch import nn
10
+ from torch.nn import functional
11
+
12
+ from diffusers.utils import logging
13
+
14
+ from ltx_video.utils.torch_utils import Identity
15
+ from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
16
+ from ltx_video.models.autoencoders.pixel_norm import PixelNorm
17
+ from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
18
+
19
+ logger = logging.get_logger(__name__)
20
+
21
+
22
+ class VideoAutoencoder(AutoencoderKLWrapper):
23
+ @classmethod
24
+ def from_pretrained(
25
+ cls,
26
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
27
+ *args,
28
+ **kwargs,
29
+ ):
30
+ config_local_path = pretrained_model_name_or_path / "config.json"
31
+ config = cls.load_config(config_local_path, **kwargs)
32
+ video_vae = cls.from_config(config)
33
+ video_vae.to(kwargs["torch_dtype"])
34
+
35
+ model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
36
+ ckpt_state_dict = torch.load(model_local_path)
37
+ video_vae.load_state_dict(ckpt_state_dict)
38
+
39
+ statistics_local_path = (
40
+ pretrained_model_name_or_path / "per_channel_statistics.json"
41
+ )
42
+ if statistics_local_path.exists():
43
+ with open(statistics_local_path, "r") as file:
44
+ data = json.load(file)
45
+ transposed_data = list(zip(*data["data"]))
46
+ data_dict = {
47
+ col: torch.tensor(vals)
48
+ for col, vals in zip(data["columns"], transposed_data)
49
+ }
50
+ video_vae.register_buffer("std_of_means", data_dict["std-of-means"])
51
+ video_vae.register_buffer(
52
+ "mean_of_means",
53
+ data_dict.get(
54
+ "mean-of-means", torch.zeros_like(data_dict["std-of-means"])
55
+ ),
56
+ )
57
+
58
+ return video_vae
59
+
60
+ @staticmethod
61
+ def from_config(config):
62
+ assert (
63
+ config["_class_name"] == "VideoAutoencoder"
64
+ ), "config must have _class_name=VideoAutoencoder"
65
+ if isinstance(config["dims"], list):
66
+ config["dims"] = tuple(config["dims"])
67
+
68
+ assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
69
+
70
+ double_z = config.get("double_z", True)
71
+ latent_log_var = config.get(
72
+ "latent_log_var", "per_channel" if double_z else "none"
73
+ )
74
+ use_quant_conv = config.get("use_quant_conv", True)
75
+
76
+ if use_quant_conv and latent_log_var == "uniform":
77
+ raise ValueError("uniform latent_log_var requires use_quant_conv=False")
78
+
79
+ encoder = Encoder(
80
+ dims=config["dims"],
81
+ in_channels=config.get("in_channels", 3),
82
+ out_channels=config["latent_channels"],
83
+ block_out_channels=config["block_out_channels"],
84
+ patch_size=config.get("patch_size", 1),
85
+ latent_log_var=latent_log_var,
86
+ norm_layer=config.get("norm_layer", "group_norm"),
87
+ patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)),
88
+ add_channel_padding=config.get("add_channel_padding", False),
89
+ )
90
+
91
+ decoder = Decoder(
92
+ dims=config["dims"],
93
+ in_channels=config["latent_channels"],
94
+ out_channels=config.get("out_channels", 3),
95
+ block_out_channels=config["block_out_channels"],
96
+ patch_size=config.get("patch_size", 1),
97
+ norm_layer=config.get("norm_layer", "group_norm"),
98
+ patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)),
99
+ add_channel_padding=config.get("add_channel_padding", False),
100
+ )
101
+
102
+ dims = config["dims"]
103
+ return VideoAutoencoder(
104
+ encoder=encoder,
105
+ decoder=decoder,
106
+ latent_channels=config["latent_channels"],
107
+ dims=dims,
108
+ use_quant_conv=use_quant_conv,
109
+ )
110
+
111
+ @property
112
+ def config(self):
113
+ return SimpleNamespace(
114
+ _class_name="VideoAutoencoder",
115
+ dims=self.dims,
116
+ in_channels=self.encoder.conv_in.in_channels
117
+ // (self.encoder.patch_size_t * self.encoder.patch_size**2),
118
+ out_channels=self.decoder.conv_out.out_channels
119
+ // (self.decoder.patch_size_t * self.decoder.patch_size**2),
120
+ latent_channels=self.decoder.conv_in.in_channels,
121
+ block_out_channels=[
122
+ self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels
123
+ for i in range(len(self.encoder.down_blocks))
124
+ ],
125
+ scaling_factor=1.0,
126
+ norm_layer=self.encoder.norm_layer,
127
+ patch_size=self.encoder.patch_size,
128
+ latent_log_var=self.encoder.latent_log_var,
129
+ use_quant_conv=self.use_quant_conv,
130
+ patch_size_t=self.encoder.patch_size_t,
131
+ add_channel_padding=self.encoder.add_channel_padding,
132
+ )
133
+
134
+ @property
135
+ def is_video_supported(self):
136
+ """
137
+ Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
138
+ """
139
+ return self.dims != 2
140
+
141
+ @property
142
+ def downscale_factor(self):
143
+ return self.encoder.downsample_factor
144
+
145
+ def to_json_string(self) -> str:
146
+ import json
147
+
148
+ return json.dumps(self.config.__dict__)
149
+
150
+ def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
151
+ model_keys = set(name for name, _ in self.named_parameters())
152
+
153
+ key_mapping = {
154
+ ".resnets.": ".res_blocks.",
155
+ "downsamplers.0": "downsample",
156
+ "upsamplers.0": "upsample",
157
+ }
158
+
159
+ converted_state_dict = {}
160
+ for key, value in state_dict.items():
161
+ for k, v in key_mapping.items():
162
+ key = key.replace(k, v)
163
+
164
+ if "norm" in key and key not in model_keys:
165
+ logger.info(
166
+ f"Removing key {key} from state_dict as it is not present in the model"
167
+ )
168
+ continue
169
+
170
+ converted_state_dict[key] = value
171
+
172
+ super().load_state_dict(converted_state_dict, strict=strict)
173
+
174
+ def last_layer(self):
175
+ if hasattr(self.decoder, "conv_out"):
176
+ if isinstance(self.decoder.conv_out, nn.Sequential):
177
+ last_layer = self.decoder.conv_out[-1]
178
+ else:
179
+ last_layer = self.decoder.conv_out
180
+ else:
181
+ last_layer = self.decoder.layers[-1]
182
+ return last_layer
183
+
184
+
185
+ class Encoder(nn.Module):
186
+ r"""
187
+ The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
188
+
189
+ Args:
190
+ in_channels (`int`, *optional*, defaults to 3):
191
+ The number of input channels.
192
+ out_channels (`int`, *optional*, defaults to 3):
193
+ The number of output channels.
194
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
195
+ The number of output channels for each block.
196
+ layers_per_block (`int`, *optional*, defaults to 2):
197
+ The number of layers per block.
198
+ norm_num_groups (`int`, *optional*, defaults to 32):
199
+ The number of groups for normalization.
200
+ patch_size (`int`, *optional*, defaults to 1):
201
+ The patch size to use. Should be a power of 2.
202
+ norm_layer (`str`, *optional*, defaults to `group_norm`):
203
+ The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
204
+ latent_log_var (`str`, *optional*, defaults to `per_channel`):
205
+ The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
206
+ """
207
+
208
+ def __init__(
209
+ self,
210
+ dims: Union[int, Tuple[int, int]] = 3,
211
+ in_channels: int = 3,
212
+ out_channels: int = 3,
213
+ block_out_channels: Tuple[int, ...] = (64,),
214
+ layers_per_block: int = 2,
215
+ norm_num_groups: int = 32,
216
+ patch_size: Union[int, Tuple[int]] = 1,
217
+ norm_layer: str = "group_norm", # group_norm, pixel_norm
218
+ latent_log_var: str = "per_channel",
219
+ patch_size_t: Optional[int] = None,
220
+ add_channel_padding: Optional[bool] = False,
221
+ ):
222
+ super().__init__()
223
+ self.patch_size = patch_size
224
+ self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size
225
+ self.add_channel_padding = add_channel_padding
226
+ self.layers_per_block = layers_per_block
227
+ self.norm_layer = norm_layer
228
+ self.latent_channels = out_channels
229
+ self.latent_log_var = latent_log_var
230
+ if add_channel_padding:
231
+ in_channels = in_channels * self.patch_size**3
232
+ else:
233
+ in_channels = in_channels * self.patch_size_t * self.patch_size**2
234
+ self.in_channels = in_channels
235
+ output_channel = block_out_channels[0]
236
+
237
+ self.conv_in = make_conv_nd(
238
+ dims=dims,
239
+ in_channels=in_channels,
240
+ out_channels=output_channel,
241
+ kernel_size=3,
242
+ stride=1,
243
+ padding=1,
244
+ )
245
+
246
+ self.down_blocks = nn.ModuleList([])
247
+
248
+ for i in range(len(block_out_channels)):
249
+ input_channel = output_channel
250
+ output_channel = block_out_channels[i]
251
+ is_final_block = i == len(block_out_channels) - 1
252
+
253
+ down_block = DownEncoderBlock3D(
254
+ dims=dims,
255
+ in_channels=input_channel,
256
+ out_channels=output_channel,
257
+ num_layers=self.layers_per_block,
258
+ add_downsample=not is_final_block and 2**i >= patch_size,
259
+ resnet_eps=1e-6,
260
+ downsample_padding=0,
261
+ resnet_groups=norm_num_groups,
262
+ norm_layer=norm_layer,
263
+ )
264
+ self.down_blocks.append(down_block)
265
+
266
+ self.mid_block = UNetMidBlock3D(
267
+ dims=dims,
268
+ in_channels=block_out_channels[-1],
269
+ num_layers=self.layers_per_block,
270
+ resnet_eps=1e-6,
271
+ resnet_groups=norm_num_groups,
272
+ norm_layer=norm_layer,
273
+ )
274
+
275
+ # out
276
+ if norm_layer == "group_norm":
277
+ self.conv_norm_out = nn.GroupNorm(
278
+ num_channels=block_out_channels[-1],
279
+ num_groups=norm_num_groups,
280
+ eps=1e-6,
281
+ )
282
+ elif norm_layer == "pixel_norm":
283
+ self.conv_norm_out = PixelNorm()
284
+ self.conv_act = nn.SiLU()
285
+
286
+ conv_out_channels = out_channels
287
+ if latent_log_var == "per_channel":
288
+ conv_out_channels *= 2
289
+ elif latent_log_var == "uniform":
290
+ conv_out_channels += 1
291
+ elif latent_log_var != "none":
292
+ raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
293
+ self.conv_out = make_conv_nd(
294
+ dims, block_out_channels[-1], conv_out_channels, 3, padding=1
295
+ )
296
+
297
+ self.gradient_checkpointing = False
298
+
299
+ @property
300
+ def downscale_factor(self):
301
+ return (
302
+ 2
303
+ ** len(
304
+ [
305
+ block
306
+ for block in self.down_blocks
307
+ if isinstance(block.downsample, Downsample3D)
308
+ ]
309
+ )
310
+ * self.patch_size
311
+ )
312
+
313
+ def forward(
314
+ self, sample: torch.FloatTensor, return_features=False
315
+ ) -> torch.FloatTensor:
316
+ r"""The forward method of the `Encoder` class."""
317
+
318
+ downsample_in_time = sample.shape[2] != 1
319
+
320
+ # patchify
321
+ patch_size_t = self.patch_size_t if downsample_in_time else 1
322
+ sample = patchify(
323
+ sample,
324
+ patch_size_hw=self.patch_size,
325
+ patch_size_t=patch_size_t,
326
+ add_channel_padding=self.add_channel_padding,
327
+ )
328
+
329
+ sample = self.conv_in(sample)
330
+
331
+ checkpoint_fn = (
332
+ partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
333
+ if self.gradient_checkpointing and self.training
334
+ else lambda x: x
335
+ )
336
+
337
+ if return_features:
338
+ features = []
339
+ for down_block in self.down_blocks:
340
+ sample = checkpoint_fn(down_block)(
341
+ sample, downsample_in_time=downsample_in_time
342
+ )
343
+ if return_features:
344
+ features.append(sample)
345
+
346
+ sample = checkpoint_fn(self.mid_block)(sample)
347
+
348
+ # post-process
349
+ sample = self.conv_norm_out(sample)
350
+ sample = self.conv_act(sample)
351
+ sample = self.conv_out(sample)
352
+
353
+ if self.latent_log_var == "uniform":
354
+ last_channel = sample[:, -1:, ...]
355
+ num_dims = sample.dim()
356
+
357
+ if num_dims == 4:
358
+ # For shape (B, C, H, W)
359
+ repeated_last_channel = last_channel.repeat(
360
+ 1, sample.shape[1] - 2, 1, 1
361
+ )
362
+ sample = torch.cat([sample, repeated_last_channel], dim=1)
363
+ elif num_dims == 5:
364
+ # For shape (B, C, F, H, W)
365
+ repeated_last_channel = last_channel.repeat(
366
+ 1, sample.shape[1] - 2, 1, 1, 1
367
+ )
368
+ sample = torch.cat([sample, repeated_last_channel], dim=1)
369
+ else:
370
+ raise ValueError(f"Invalid input shape: {sample.shape}")
371
+
372
+ if return_features:
373
+ features.append(sample[:, : self.latent_channels, ...])
374
+ return sample, features
375
+ return sample
376
+
377
+
378
+ class Decoder(nn.Module):
379
+ r"""
380
+ The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
381
+
382
+ Args:
383
+ in_channels (`int`, *optional*, defaults to 3):
384
+ The number of input channels.
385
+ out_channels (`int`, *optional*, defaults to 3):
386
+ The number of output channels.
387
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
388
+ The number of output channels for each block.
389
+ layers_per_block (`int`, *optional*, defaults to 2):
390
+ The number of layers per block.
391
+ norm_num_groups (`int`, *optional*, defaults to 32):
392
+ The number of groups for normalization.
393
+ patch_size (`int`, *optional*, defaults to 1):
394
+ The patch size to use. Should be a power of 2.
395
+ norm_layer (`str`, *optional*, defaults to `group_norm`):
396
+ The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
397
+ """
398
+
399
+ def __init__(
400
+ self,
401
+ dims,
402
+ in_channels: int = 3,
403
+ out_channels: int = 3,
404
+ block_out_channels: Tuple[int, ...] = (64,),
405
+ layers_per_block: int = 2,
406
+ norm_num_groups: int = 32,
407
+ patch_size: int = 1,
408
+ norm_layer: str = "group_norm",
409
+ patch_size_t: Optional[int] = None,
410
+ add_channel_padding: Optional[bool] = False,
411
+ ):
412
+ super().__init__()
413
+ self.patch_size = patch_size
414
+ self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size
415
+ self.add_channel_padding = add_channel_padding
416
+ self.layers_per_block = layers_per_block
417
+ if add_channel_padding:
418
+ out_channels = out_channels * self.patch_size**3
419
+ else:
420
+ out_channels = out_channels * self.patch_size_t * self.patch_size**2
421
+ self.out_channels = out_channels
422
+
423
+ self.conv_in = make_conv_nd(
424
+ dims,
425
+ in_channels,
426
+ block_out_channels[-1],
427
+ kernel_size=3,
428
+ stride=1,
429
+ padding=1,
430
+ )
431
+
432
+ self.mid_block = None
433
+ self.up_blocks = nn.ModuleList([])
434
+
435
+ self.mid_block = UNetMidBlock3D(
436
+ dims=dims,
437
+ in_channels=block_out_channels[-1],
438
+ num_layers=self.layers_per_block,
439
+ resnet_eps=1e-6,
440
+ resnet_groups=norm_num_groups,
441
+ norm_layer=norm_layer,
442
+ )
443
+
444
+ reversed_block_out_channels = list(reversed(block_out_channels))
445
+ output_channel = reversed_block_out_channels[0]
446
+ for i in range(len(reversed_block_out_channels)):
447
+ prev_output_channel = output_channel
448
+ output_channel = reversed_block_out_channels[i]
449
+
450
+ is_final_block = i == len(block_out_channels) - 1
451
+
452
+ up_block = UpDecoderBlock3D(
453
+ dims=dims,
454
+ num_layers=self.layers_per_block + 1,
455
+ in_channels=prev_output_channel,
456
+ out_channels=output_channel,
457
+ add_upsample=not is_final_block
458
+ and 2 ** (len(block_out_channels) - i - 1) > patch_size,
459
+ resnet_eps=1e-6,
460
+ resnet_groups=norm_num_groups,
461
+ norm_layer=norm_layer,
462
+ )
463
+ self.up_blocks.append(up_block)
464
+
465
+ if norm_layer == "group_norm":
466
+ self.conv_norm_out = nn.GroupNorm(
467
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6
468
+ )
469
+ elif norm_layer == "pixel_norm":
470
+ self.conv_norm_out = PixelNorm()
471
+
472
+ self.conv_act = nn.SiLU()
473
+ self.conv_out = make_conv_nd(
474
+ dims, block_out_channels[0], out_channels, 3, padding=1
475
+ )
476
+
477
+ self.gradient_checkpointing = False
478
+
479
+ def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
480
+ r"""The forward method of the `Decoder` class."""
481
+ assert target_shape is not None, "target_shape must be provided"
482
+ upsample_in_time = sample.shape[2] < target_shape[2]
483
+
484
+ sample = self.conv_in(sample)
485
+
486
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
487
+
488
+ checkpoint_fn = (
489
+ partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
490
+ if self.gradient_checkpointing and self.training
491
+ else lambda x: x
492
+ )
493
+
494
+ sample = checkpoint_fn(self.mid_block)(sample)
495
+ sample = sample.to(upscale_dtype)
496
+
497
+ for up_block in self.up_blocks:
498
+ sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time)
499
+
500
+ # post-process
501
+ sample = self.conv_norm_out(sample)
502
+ sample = self.conv_act(sample)
503
+ sample = self.conv_out(sample)
504
+
505
+ # un-patchify
506
+ patch_size_t = self.patch_size_t if upsample_in_time else 1
507
+ sample = unpatchify(
508
+ sample,
509
+ patch_size_hw=self.patch_size,
510
+ patch_size_t=patch_size_t,
511
+ add_channel_padding=self.add_channel_padding,
512
+ )
513
+
514
+ return sample
515
+
516
+
517
+ class DownEncoderBlock3D(nn.Module):
518
+ def __init__(
519
+ self,
520
+ dims: Union[int, Tuple[int, int]],
521
+ in_channels: int,
522
+ out_channels: int,
523
+ dropout: float = 0.0,
524
+ num_layers: int = 1,
525
+ resnet_eps: float = 1e-6,
526
+ resnet_groups: int = 32,
527
+ add_downsample: bool = True,
528
+ downsample_padding: int = 1,
529
+ norm_layer: str = "group_norm",
530
+ ):
531
+ super().__init__()
532
+ res_blocks = []
533
+
534
+ for i in range(num_layers):
535
+ in_channels = in_channels if i == 0 else out_channels
536
+ res_blocks.append(
537
+ ResnetBlock3D(
538
+ dims=dims,
539
+ in_channels=in_channels,
540
+ out_channels=out_channels,
541
+ eps=resnet_eps,
542
+ groups=resnet_groups,
543
+ dropout=dropout,
544
+ norm_layer=norm_layer,
545
+ )
546
+ )
547
+
548
+ self.res_blocks = nn.ModuleList(res_blocks)
549
+
550
+ if add_downsample:
551
+ self.downsample = Downsample3D(
552
+ dims,
553
+ out_channels,
554
+ out_channels=out_channels,
555
+ padding=downsample_padding,
556
+ )
557
+ else:
558
+ self.downsample = Identity()
559
+
560
+ def forward(
561
+ self, hidden_states: torch.FloatTensor, downsample_in_time
562
+ ) -> torch.FloatTensor:
563
+ for resnet in self.res_blocks:
564
+ hidden_states = resnet(hidden_states)
565
+
566
+ hidden_states = self.downsample(
567
+ hidden_states, downsample_in_time=downsample_in_time
568
+ )
569
+
570
+ return hidden_states
571
+
572
+
573
+ class UNetMidBlock3D(nn.Module):
574
+ """
575
+ A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
576
+
577
+ Args:
578
+ in_channels (`int`): The number of input channels.
579
+ dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
580
+ num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
581
+ resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
582
+ resnet_groups (`int`, *optional*, defaults to 32):
583
+ The number of groups to use in the group normalization layers of the resnet blocks.
584
+
585
+ Returns:
586
+ `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
587
+ in_channels, height, width)`.
588
+
589
+ """
590
+
591
+ def __init__(
592
+ self,
593
+ dims: Union[int, Tuple[int, int]],
594
+ in_channels: int,
595
+ dropout: float = 0.0,
596
+ num_layers: int = 1,
597
+ resnet_eps: float = 1e-6,
598
+ resnet_groups: int = 32,
599
+ norm_layer: str = "group_norm",
600
+ ):
601
+ super().__init__()
602
+ resnet_groups = (
603
+ resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
604
+ )
605
+
606
+ self.res_blocks = nn.ModuleList(
607
+ [
608
+ ResnetBlock3D(
609
+ dims=dims,
610
+ in_channels=in_channels,
611
+ out_channels=in_channels,
612
+ eps=resnet_eps,
613
+ groups=resnet_groups,
614
+ dropout=dropout,
615
+ norm_layer=norm_layer,
616
+ )
617
+ for _ in range(num_layers)
618
+ ]
619
+ )
620
+
621
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
622
+ for resnet in self.res_blocks:
623
+ hidden_states = resnet(hidden_states)
624
+
625
+ return hidden_states
626
+
627
+
628
+ class UpDecoderBlock3D(nn.Module):
629
+ def __init__(
630
+ self,
631
+ dims: Union[int, Tuple[int, int]],
632
+ in_channels: int,
633
+ out_channels: int,
634
+ resolution_idx: Optional[int] = None,
635
+ dropout: float = 0.0,
636
+ num_layers: int = 1,
637
+ resnet_eps: float = 1e-6,
638
+ resnet_groups: int = 32,
639
+ add_upsample: bool = True,
640
+ norm_layer: str = "group_norm",
641
+ ):
642
+ super().__init__()
643
+ res_blocks = []
644
+
645
+ for i in range(num_layers):
646
+ input_channels = in_channels if i == 0 else out_channels
647
+
648
+ res_blocks.append(
649
+ ResnetBlock3D(
650
+ dims=dims,
651
+ in_channels=input_channels,
652
+ out_channels=out_channels,
653
+ eps=resnet_eps,
654
+ groups=resnet_groups,
655
+ dropout=dropout,
656
+ norm_layer=norm_layer,
657
+ )
658
+ )
659
+
660
+ self.res_blocks = nn.ModuleList(res_blocks)
661
+
662
+ if add_upsample:
663
+ self.upsample = Upsample3D(
664
+ dims=dims, channels=out_channels, out_channels=out_channels
665
+ )
666
+ else:
667
+ self.upsample = Identity()
668
+
669
+ self.resolution_idx = resolution_idx
670
+
671
+ def forward(
672
+ self, hidden_states: torch.FloatTensor, upsample_in_time=True
673
+ ) -> torch.FloatTensor:
674
+ for resnet in self.res_blocks:
675
+ hidden_states = resnet(hidden_states)
676
+
677
+ hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time)
678
+
679
+ return hidden_states
680
+
681
+
682
+ class ResnetBlock3D(nn.Module):
683
+ r"""
684
+ A Resnet block.
685
+
686
+ Parameters:
687
+ in_channels (`int`): The number of channels in the input.
688
+ out_channels (`int`, *optional*, default to be `None`):
689
+ The number of output channels for the first conv layer. If None, same as `in_channels`.
690
+ dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
691
+ groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
692
+ eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
693
+ """
694
+
695
+ def __init__(
696
+ self,
697
+ dims: Union[int, Tuple[int, int]],
698
+ in_channels: int,
699
+ out_channels: Optional[int] = None,
700
+ conv_shortcut: bool = False,
701
+ dropout: float = 0.0,
702
+ groups: int = 32,
703
+ eps: float = 1e-6,
704
+ norm_layer: str = "group_norm",
705
+ ):
706
+ super().__init__()
707
+ self.in_channels = in_channels
708
+ out_channels = in_channels if out_channels is None else out_channels
709
+ self.out_channels = out_channels
710
+ self.use_conv_shortcut = conv_shortcut
711
+
712
+ if norm_layer == "group_norm":
713
+ self.norm1 = torch.nn.GroupNorm(
714
+ num_groups=groups, num_channels=in_channels, eps=eps, affine=True
715
+ )
716
+ elif norm_layer == "pixel_norm":
717
+ self.norm1 = PixelNorm()
718
+
719
+ self.non_linearity = nn.SiLU()
720
+
721
+ self.conv1 = make_conv_nd(
722
+ dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1
723
+ )
724
+
725
+ if norm_layer == "group_norm":
726
+ self.norm2 = torch.nn.GroupNorm(
727
+ num_groups=groups, num_channels=out_channels, eps=eps, affine=True
728
+ )
729
+ elif norm_layer == "pixel_norm":
730
+ self.norm2 = PixelNorm()
731
+
732
+ self.dropout = torch.nn.Dropout(dropout)
733
+
734
+ self.conv2 = make_conv_nd(
735
+ dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1
736
+ )
737
+
738
+ self.conv_shortcut = (
739
+ make_linear_nd(
740
+ dims=dims, in_channels=in_channels, out_channels=out_channels
741
+ )
742
+ if in_channels != out_channels
743
+ else nn.Identity()
744
+ )
745
+
746
+ def forward(
747
+ self,
748
+ input_tensor: torch.FloatTensor,
749
+ ) -> torch.FloatTensor:
750
+ hidden_states = input_tensor
751
+
752
+ hidden_states = self.norm1(hidden_states)
753
+
754
+ hidden_states = self.non_linearity(hidden_states)
755
+
756
+ hidden_states = self.conv1(hidden_states)
757
+
758
+ hidden_states = self.norm2(hidden_states)
759
+
760
+ hidden_states = self.non_linearity(hidden_states)
761
+
762
+ hidden_states = self.dropout(hidden_states)
763
+
764
+ hidden_states = self.conv2(hidden_states)
765
+
766
+ input_tensor = self.conv_shortcut(input_tensor)
767
+
768
+ output_tensor = input_tensor + hidden_states
769
+
770
+ return output_tensor
771
+
772
+
773
+ class Downsample3D(nn.Module):
774
+ def __init__(
775
+ self,
776
+ dims,
777
+ in_channels: int,
778
+ out_channels: int,
779
+ kernel_size: int = 3,
780
+ padding: int = 1,
781
+ ):
782
+ super().__init__()
783
+ stride: int = 2
784
+ self.padding = padding
785
+ self.in_channels = in_channels
786
+ self.dims = dims
787
+ self.conv = make_conv_nd(
788
+ dims=dims,
789
+ in_channels=in_channels,
790
+ out_channels=out_channels,
791
+ kernel_size=kernel_size,
792
+ stride=stride,
793
+ padding=padding,
794
+ )
795
+
796
+ def forward(self, x, downsample_in_time=True):
797
+ conv = self.conv
798
+ if self.padding == 0:
799
+ if self.dims == 2:
800
+ padding = (0, 1, 0, 1)
801
+ else:
802
+ padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0)
803
+
804
+ x = functional.pad(x, padding, mode="constant", value=0)
805
+
806
+ if self.dims == (2, 1) and not downsample_in_time:
807
+ return conv(x, skip_time_conv=True)
808
+
809
+ return conv(x)
810
+
811
+
812
+ class Upsample3D(nn.Module):
813
+ """
814
+ An upsampling layer for 3D tensors of shape (B, C, D, H, W).
815
+
816
+ :param channels: channels in the inputs and outputs.
817
+ """
818
+
819
+ def __init__(self, dims, channels, out_channels=None):
820
+ super().__init__()
821
+ self.dims = dims
822
+ self.channels = channels
823
+ self.out_channels = out_channels or channels
824
+ self.conv = make_conv_nd(
825
+ dims, channels, out_channels, kernel_size=3, padding=1, bias=True
826
+ )
827
+
828
+ def forward(self, x, upsample_in_time):
829
+ if self.dims == 2:
830
+ x = functional.interpolate(
831
+ x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest"
832
+ )
833
+ else:
834
+ time_scale_factor = 2 if upsample_in_time else 1
835
+ # print("before:", x.shape)
836
+ b, c, d, h, w = x.shape
837
+ x = rearrange(x, "b c d h w -> (b d) c h w")
838
+ # height and width interpolate
839
+ x = functional.interpolate(
840
+ x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest"
841
+ )
842
+ _, _, h, w = x.shape
843
+
844
+ if not upsample_in_time and self.dims == (2, 1):
845
+ x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w)
846
+ return self.conv(x, skip_time_conv=True)
847
+
848
+ # Second ** upsampling ** which is essentially treated as a 1D convolution across the 'd' dimension
849
+ x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b)
850
+
851
+ # (b h w) c 1 d
852
+ new_d = x.shape[-1] * time_scale_factor
853
+ x = functional.interpolate(x, (1, new_d), mode="nearest")
854
+ # (b h w) c 1 new_d
855
+ x = rearrange(
856
+ x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d
857
+ )
858
+ # b c d h w
859
+
860
+ # x = functional.interpolate(
861
+ # x, (x.shape[2] * time_scale_factor, x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
862
+ # )
863
+ # print("after:", x.shape)
864
+
865
+ return self.conv(x)
866
+
867
+
868
+ def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False):
869
+ if patch_size_hw == 1 and patch_size_t == 1:
870
+ return x
871
+ if x.dim() == 4:
872
+ x = rearrange(
873
+ x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
874
+ )
875
+ elif x.dim() == 5:
876
+ x = rearrange(
877
+ x,
878
+ "b c (f p) (h q) (w r) -> b (c p r q) f h w",
879
+ p=patch_size_t,
880
+ q=patch_size_hw,
881
+ r=patch_size_hw,
882
+ )
883
+ else:
884
+ raise ValueError(f"Invalid input shape: {x.shape}")
885
+
886
+ if (
887
+ (x.dim() == 5)
888
+ and (patch_size_hw > patch_size_t)
889
+ and (patch_size_t > 1 or add_channel_padding)
890
+ ):
891
+ channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1]
892
+ padding_zeros = torch.zeros(
893
+ x.shape[0],
894
+ channels_to_pad,
895
+ x.shape[2],
896
+ x.shape[3],
897
+ x.shape[4],
898
+ device=x.device,
899
+ dtype=x.dtype,
900
+ )
901
+ x = torch.cat([padding_zeros, x], dim=1)
902
+
903
+ return x
904
+
905
+
906
+ def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False):
907
+ if patch_size_hw == 1 and patch_size_t == 1:
908
+ return x
909
+
910
+ if (
911
+ (x.dim() == 5)
912
+ and (patch_size_hw > patch_size_t)
913
+ and (patch_size_t > 1 or add_channel_padding)
914
+ ):
915
+ channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw))
916
+ x = x[:, :channels_to_keep, :, :, :]
917
+
918
+ if x.dim() == 4:
919
+ x = rearrange(
920
+ x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
921
+ )
922
+ elif x.dim() == 5:
923
+ x = rearrange(
924
+ x,
925
+ "b (c p r q) f h w -> b c (f p) (h q) (w r)",
926
+ p=patch_size_t,
927
+ q=patch_size_hw,
928
+ r=patch_size_hw,
929
+ )
930
+
931
+ return x
932
+
933
+
934
+ def create_video_autoencoder_config(
935
+ latent_channels: int = 4,
936
+ ):
937
+ config = {
938
+ "_class_name": "VideoAutoencoder",
939
+ "dims": (
940
+ 2,
941
+ 1,
942
+ ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d
943
+ "in_channels": 3, # Number of input color channels (e.g., RGB)
944
+ "out_channels": 3, # Number of output color channels
945
+ "latent_channels": latent_channels, # Number of channels in the latent space representation
946
+ "block_out_channels": [
947
+ 128,
948
+ 256,
949
+ 512,
950
+ 512,
951
+ ], # Number of output channels of each encoder / decoder inner block
952
+ "patch_size": 1,
953
+ }
954
+
955
+ return config
956
+
957
+
958
+ def create_video_autoencoder_pathify4x4x4_config(
959
+ latent_channels: int = 4,
960
+ ):
961
+ config = {
962
+ "_class_name": "VideoAutoencoder",
963
+ "dims": (
964
+ 2,
965
+ 1,
966
+ ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d
967
+ "in_channels": 3, # Number of input color channels (e.g., RGB)
968
+ "out_channels": 3, # Number of output color channels
969
+ "latent_channels": latent_channels, # Number of channels in the latent space representation
970
+ "block_out_channels": [512]
971
+ * 4, # Number of output channels of each encoder / decoder inner block
972
+ "patch_size": 4,
973
+ "latent_log_var": "uniform",
974
+ }
975
+
976
+ return config
977
+
978
+
979
+ def create_video_autoencoder_pathify4x4_config(
980
+ latent_channels: int = 4,
981
+ ):
982
+ config = {
983
+ "_class_name": "VideoAutoencoder",
984
+ "dims": 2, # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d
985
+ "in_channels": 3, # Number of input color channels (e.g., RGB)
986
+ "out_channels": 3, # Number of output color channels
987
+ "latent_channels": latent_channels, # Number of channels in the latent space representation
988
+ "block_out_channels": [512]
989
+ * 4, # Number of output channels of each encoder / decoder inner block
990
+ "patch_size": 4,
991
+ "norm_layer": "pixel_norm",
992
+ }
993
+
994
+ return config
995
+
996
+
997
+ def test_vae_patchify_unpatchify():
998
+ import torch
999
+
1000
+ x = torch.randn(2, 3, 8, 64, 64)
1001
+ x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
1002
+ x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
1003
+ assert torch.allclose(x, x_unpatched)
1004
+
1005
+
1006
+ def demo_video_autoencoder_forward_backward():
1007
+ # Configuration for the VideoAutoencoder
1008
+ config = create_video_autoencoder_pathify4x4x4_config()
1009
+
1010
+ # Instantiate the VideoAutoencoder with the specified configuration
1011
+ video_autoencoder = VideoAutoencoder.from_config(config)
1012
+
1013
+ print(video_autoencoder)
1014
+
1015
+ # Print the total number of parameters in the video autoencoder
1016
+ total_params = sum(p.numel() for p in video_autoencoder.parameters())
1017
+ print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
1018
+
1019
+ # Create a mock input tensor simulating a batch of videos
1020
+ # Shape: (batch_size, channels, depth, height, width)
1021
+ # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame
1022
+ input_videos = torch.randn(2, 3, 8, 64, 64)
1023
+
1024
+ # Forward pass: encode and decode the input videos
1025
+ latent = video_autoencoder.encode(input_videos).latent_dist.mode()
1026
+ print(f"input shape={input_videos.shape}")
1027
+ print(f"latent shape={latent.shape}")
1028
+ reconstructed_videos = video_autoencoder.decode(
1029
+ latent, target_shape=input_videos.shape
1030
+ ).sample
1031
+
1032
+ print(f"reconstructed shape={reconstructed_videos.shape}")
1033
+
1034
+ # Calculate the loss (e.g., mean squared error)
1035
+ loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
1036
+
1037
+ # Perform backward pass
1038
+ loss.backward()
1039
+
1040
+ print(f"Demo completed with loss: {loss.item()}")
1041
+
1042
+
1043
+ # Ensure to call the demo function to execute the forward and backward pass
1044
+ if __name__ == "__main__":
1045
+ demo_video_autoencoder_forward_backward()
ltx_video/models/transformers/__init__.py ADDED
File without changes
ltx_video/models/transformers/attention.py ADDED
@@ -0,0 +1,1265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import inspect
2
+ from importlib import import_module
3
+ from typing import Any, Dict, Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
8
+ from diffusers.models.attention import _chunked_feed_forward
9
+ from diffusers.models.attention_processor import (
10
+ LoRAAttnAddedKVProcessor,
11
+ LoRAAttnProcessor,
12
+ LoRAAttnProcessor2_0,
13
+ LoRAXFormersAttnProcessor,
14
+ SpatialNorm,
15
+ )
16
+ from diffusers.models.lora import LoRACompatibleLinear
17
+ from diffusers.models.normalization import RMSNorm
18
+ from diffusers.utils import deprecate, logging
19
+ from diffusers.utils.torch_utils import maybe_allow_in_graph
20
+ from einops import rearrange
21
+ from torch import nn
22
+
23
+ from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
24
+
25
+ try:
26
+ from torch_xla.experimental.custom_kernel import flash_attention
27
+ except ImportError:
28
+ # workaround for automatic tests. Currently this function is manually patched
29
+ # to the torch_xla lib on setup of container
30
+ pass
31
+
32
+ # code adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
33
+
34
+ logger = logging.get_logger(__name__)
35
+
36
+
37
+ @maybe_allow_in_graph
38
+ class BasicTransformerBlock(nn.Module):
39
+ r"""
40
+ A basic Transformer block.
41
+
42
+ Parameters:
43
+ dim (`int`): The number of channels in the input and output.
44
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
45
+ attention_head_dim (`int`): The number of channels in each head.
46
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
47
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
48
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
49
+ num_embeds_ada_norm (:
50
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
51
+ attention_bias (:
52
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
53
+ only_cross_attention (`bool`, *optional*):
54
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
55
+ double_self_attention (`bool`, *optional*):
56
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
57
+ upcast_attention (`bool`, *optional*):
58
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
59
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
60
+ Whether to use learnable elementwise affine parameters for normalization.
61
+ qk_norm (`str`, *optional*, defaults to None):
62
+ Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
63
+ adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`):
64
+ The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none".
65
+ standardization_norm (`str`, *optional*, defaults to `"layer_norm"`):
66
+ The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
67
+ final_dropout (`bool` *optional*, defaults to False):
68
+ Whether to apply a final dropout after the last feed-forward layer.
69
+ attention_type (`str`, *optional*, defaults to `"default"`):
70
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
71
+ positional_embeddings (`str`, *optional*, defaults to `None`):
72
+ The type of positional embeddings to apply to.
73
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
74
+ The maximum number of positional embeddings to apply.
75
+ """
76
+
77
+ def __init__(
78
+ self,
79
+ dim: int,
80
+ num_attention_heads: int,
81
+ attention_head_dim: int,
82
+ dropout=0.0,
83
+ cross_attention_dim: Optional[int] = None,
84
+ activation_fn: str = "geglu",
85
+ num_embeds_ada_norm: Optional[int] = None, # pylint: disable=unused-argument
86
+ attention_bias: bool = False,
87
+ only_cross_attention: bool = False,
88
+ double_self_attention: bool = False,
89
+ upcast_attention: bool = False,
90
+ norm_elementwise_affine: bool = True,
91
+ adaptive_norm: str = "single_scale_shift", # 'single_scale_shift', 'single_scale' or 'none'
92
+ standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
93
+ norm_eps: float = 1e-5,
94
+ qk_norm: Optional[str] = None,
95
+ final_dropout: bool = False,
96
+ attention_type: str = "default", # pylint: disable=unused-argument
97
+ ff_inner_dim: Optional[int] = None,
98
+ ff_bias: bool = True,
99
+ attention_out_bias: bool = True,
100
+ use_tpu_flash_attention: bool = False,
101
+ use_rope: bool = False,
102
+ ):
103
+ super().__init__()
104
+ self.only_cross_attention = only_cross_attention
105
+ self.use_tpu_flash_attention = use_tpu_flash_attention
106
+ self.adaptive_norm = adaptive_norm
107
+
108
+ assert standardization_norm in ["layer_norm", "rms_norm"]
109
+ assert adaptive_norm in ["single_scale_shift", "single_scale", "none"]
110
+
111
+ make_norm_layer = (
112
+ nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm
113
+ )
114
+
115
+ # Define 3 blocks. Each block has its own normalization layer.
116
+ # 1. Self-Attn
117
+ self.norm1 = make_norm_layer(
118
+ dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
119
+ )
120
+
121
+ self.attn1 = Attention(
122
+ query_dim=dim,
123
+ heads=num_attention_heads,
124
+ dim_head=attention_head_dim,
125
+ dropout=dropout,
126
+ bias=attention_bias,
127
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
128
+ upcast_attention=upcast_attention,
129
+ out_bias=attention_out_bias,
130
+ use_tpu_flash_attention=use_tpu_flash_attention,
131
+ qk_norm=qk_norm,
132
+ use_rope=use_rope,
133
+ )
134
+
135
+ # 2. Cross-Attn
136
+ if cross_attention_dim is not None or double_self_attention:
137
+ self.attn2 = Attention(
138
+ query_dim=dim,
139
+ cross_attention_dim=(
140
+ cross_attention_dim if not double_self_attention else None
141
+ ),
142
+ heads=num_attention_heads,
143
+ dim_head=attention_head_dim,
144
+ dropout=dropout,
145
+ bias=attention_bias,
146
+ upcast_attention=upcast_attention,
147
+ out_bias=attention_out_bias,
148
+ use_tpu_flash_attention=use_tpu_flash_attention,
149
+ qk_norm=qk_norm,
150
+ use_rope=use_rope,
151
+ ) # is self-attn if encoder_hidden_states is none
152
+
153
+ if adaptive_norm == "none":
154
+ self.attn2_norm = make_norm_layer(
155
+ dim, norm_eps, norm_elementwise_affine
156
+ )
157
+ else:
158
+ self.attn2 = None
159
+ self.attn2_norm = None
160
+
161
+ self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine)
162
+
163
+ # 3. Feed-forward
164
+ self.ff = FeedForward(
165
+ dim,
166
+ dropout=dropout,
167
+ activation_fn=activation_fn,
168
+ final_dropout=final_dropout,
169
+ inner_dim=ff_inner_dim,
170
+ bias=ff_bias,
171
+ )
172
+
173
+ # 5. Scale-shift for PixArt-Alpha.
174
+ if adaptive_norm != "none":
175
+ num_ada_params = 4 if adaptive_norm == "single_scale" else 6
176
+ self.scale_shift_table = nn.Parameter(
177
+ torch.randn(num_ada_params, dim) / dim**0.5
178
+ )
179
+
180
+ # let chunk size default to None
181
+ self._chunk_size = None
182
+ self._chunk_dim = 0
183
+
184
+ def set_use_tpu_flash_attention(self):
185
+ r"""
186
+ Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
187
+ attention kernel.
188
+ """
189
+ self.use_tpu_flash_attention = True
190
+ self.attn1.set_use_tpu_flash_attention()
191
+ self.attn2.set_use_tpu_flash_attention()
192
+
193
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
194
+ # Sets chunk feed-forward
195
+ self._chunk_size = chunk_size
196
+ self._chunk_dim = dim
197
+
198
+ def forward(
199
+ self,
200
+ hidden_states: torch.FloatTensor,
201
+ freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
202
+ attention_mask: Optional[torch.FloatTensor] = None,
203
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
204
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
205
+ timestep: Optional[torch.LongTensor] = None,
206
+ cross_attention_kwargs: Dict[str, Any] = None,
207
+ class_labels: Optional[torch.LongTensor] = None,
208
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
209
+ skip_layer_mask: Optional[torch.Tensor] = None,
210
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
211
+ ) -> torch.FloatTensor:
212
+ if cross_attention_kwargs is not None:
213
+ if cross_attention_kwargs.get("scale", None) is not None:
214
+ logger.warning(
215
+ "Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored."
216
+ )
217
+
218
+ # Notice that normalization is always applied before the real computation in the following blocks.
219
+ # 0. Self-Attention
220
+ batch_size = hidden_states.shape[0]
221
+
222
+ original_hidden_states = hidden_states
223
+
224
+ norm_hidden_states = self.norm1(hidden_states)
225
+
226
+ # Apply ada_norm_single
227
+ if self.adaptive_norm in ["single_scale_shift", "single_scale"]:
228
+ assert timestep.ndim == 3 # [batch, 1 or num_tokens, embedding_dim]
229
+ num_ada_params = self.scale_shift_table.shape[0]
230
+ ada_values = self.scale_shift_table[None, None] + timestep.reshape(
231
+ batch_size, timestep.shape[1], num_ada_params, -1
232
+ )
233
+ if self.adaptive_norm == "single_scale_shift":
234
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
235
+ ada_values.unbind(dim=2)
236
+ )
237
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
238
+ else:
239
+ scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2)
240
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa)
241
+ elif self.adaptive_norm == "none":
242
+ scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None
243
+ else:
244
+ raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")
245
+
246
+ norm_hidden_states = norm_hidden_states.squeeze(
247
+ 1
248
+ ) # TODO: Check if this is needed
249
+
250
+ # 1. Prepare GLIGEN inputs
251
+ cross_attention_kwargs = (
252
+ cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
253
+ )
254
+
255
+ attn_output = self.attn1(
256
+ norm_hidden_states,
257
+ freqs_cis=freqs_cis,
258
+ encoder_hidden_states=(
259
+ encoder_hidden_states if self.only_cross_attention else None
260
+ ),
261
+ attention_mask=attention_mask,
262
+ skip_layer_mask=skip_layer_mask,
263
+ skip_layer_strategy=skip_layer_strategy,
264
+ **cross_attention_kwargs,
265
+ )
266
+ if gate_msa is not None:
267
+ attn_output = gate_msa * attn_output
268
+
269
+ hidden_states = attn_output + hidden_states
270
+ if hidden_states.ndim == 4:
271
+ hidden_states = hidden_states.squeeze(1)
272
+
273
+ # 3. Cross-Attention
274
+ if self.attn2 is not None:
275
+ if self.adaptive_norm == "none":
276
+ attn_input = self.attn2_norm(hidden_states)
277
+ else:
278
+ attn_input = hidden_states
279
+ attn_output = self.attn2(
280
+ attn_input,
281
+ freqs_cis=freqs_cis,
282
+ encoder_hidden_states=encoder_hidden_states,
283
+ attention_mask=encoder_attention_mask,
284
+ **cross_attention_kwargs,
285
+ )
286
+ hidden_states = attn_output + hidden_states
287
+
288
+ # 4. Feed-forward
289
+ norm_hidden_states = self.norm2(hidden_states)
290
+ if self.adaptive_norm == "single_scale_shift":
291
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
292
+ elif self.adaptive_norm == "single_scale":
293
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp)
294
+ elif self.adaptive_norm == "none":
295
+ pass
296
+ else:
297
+ raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}")
298
+
299
+ if self._chunk_size is not None:
300
+ # "feed_forward_chunk_size" can be used to save memory
301
+ ff_output = _chunked_feed_forward(
302
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size
303
+ )
304
+ else:
305
+ ff_output = self.ff(norm_hidden_states)
306
+ if gate_mlp is not None:
307
+ ff_output = gate_mlp * ff_output
308
+
309
+ hidden_states = ff_output + hidden_states
310
+ if hidden_states.ndim == 4:
311
+ hidden_states = hidden_states.squeeze(1)
312
+
313
+ if (
314
+ skip_layer_mask is not None
315
+ and skip_layer_strategy == SkipLayerStrategy.TransformerBlock
316
+ ):
317
+ skip_layer_mask = skip_layer_mask.view(-1, 1, 1)
318
+ hidden_states = hidden_states * skip_layer_mask + original_hidden_states * (
319
+ 1.0 - skip_layer_mask
320
+ )
321
+
322
+ return hidden_states
323
+
324
+
325
+ @maybe_allow_in_graph
326
+ class Attention(nn.Module):
327
+ r"""
328
+ A cross attention layer.
329
+
330
+ Parameters:
331
+ query_dim (`int`):
332
+ The number of channels in the query.
333
+ cross_attention_dim (`int`, *optional*):
334
+ The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
335
+ heads (`int`, *optional*, defaults to 8):
336
+ The number of heads to use for multi-head attention.
337
+ dim_head (`int`, *optional*, defaults to 64):
338
+ The number of channels in each head.
339
+ dropout (`float`, *optional*, defaults to 0.0):
340
+ The dropout probability to use.
341
+ bias (`bool`, *optional*, defaults to False):
342
+ Set to `True` for the query, key, and value linear layers to contain a bias parameter.
343
+ upcast_attention (`bool`, *optional*, defaults to False):
344
+ Set to `True` to upcast the attention computation to `float32`.
345
+ upcast_softmax (`bool`, *optional*, defaults to False):
346
+ Set to `True` to upcast the softmax computation to `float32`.
347
+ cross_attention_norm (`str`, *optional*, defaults to `None`):
348
+ The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`.
349
+ cross_attention_norm_num_groups (`int`, *optional*, defaults to 32):
350
+ The number of groups to use for the group norm in the cross attention.
351
+ added_kv_proj_dim (`int`, *optional*, defaults to `None`):
352
+ The number of channels to use for the added key and value projections. If `None`, no projection is used.
353
+ norm_num_groups (`int`, *optional*, defaults to `None`):
354
+ The number of groups to use for the group norm in the attention.
355
+ spatial_norm_dim (`int`, *optional*, defaults to `None`):
356
+ The number of channels to use for the spatial normalization.
357
+ out_bias (`bool`, *optional*, defaults to `True`):
358
+ Set to `True` to use a bias in the output linear layer.
359
+ scale_qk (`bool`, *optional*, defaults to `True`):
360
+ Set to `True` to scale the query and key by `1 / sqrt(dim_head)`.
361
+ qk_norm (`str`, *optional*, defaults to None):
362
+ Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
363
+ only_cross_attention (`bool`, *optional*, defaults to `False`):
364
+ Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if
365
+ `added_kv_proj_dim` is not `None`.
366
+ eps (`float`, *optional*, defaults to 1e-5):
367
+ An additional value added to the denominator in group normalization that is used for numerical stability.
368
+ rescale_output_factor (`float`, *optional*, defaults to 1.0):
369
+ A factor to rescale the output by dividing it with this value.
370
+ residual_connection (`bool`, *optional*, defaults to `False`):
371
+ Set to `True` to add the residual connection to the output.
372
+ _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`):
373
+ Set to `True` if the attention block is loaded from a deprecated state dict.
374
+ processor (`AttnProcessor`, *optional*, defaults to `None`):
375
+ The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and
376
+ `AttnProcessor` otherwise.
377
+ """
378
+
379
+ def __init__(
380
+ self,
381
+ query_dim: int,
382
+ cross_attention_dim: Optional[int] = None,
383
+ heads: int = 8,
384
+ dim_head: int = 64,
385
+ dropout: float = 0.0,
386
+ bias: bool = False,
387
+ upcast_attention: bool = False,
388
+ upcast_softmax: bool = False,
389
+ cross_attention_norm: Optional[str] = None,
390
+ cross_attention_norm_num_groups: int = 32,
391
+ added_kv_proj_dim: Optional[int] = None,
392
+ norm_num_groups: Optional[int] = None,
393
+ spatial_norm_dim: Optional[int] = None,
394
+ out_bias: bool = True,
395
+ scale_qk: bool = True,
396
+ qk_norm: Optional[str] = None,
397
+ only_cross_attention: bool = False,
398
+ eps: float = 1e-5,
399
+ rescale_output_factor: float = 1.0,
400
+ residual_connection: bool = False,
401
+ _from_deprecated_attn_block: bool = False,
402
+ processor: Optional["AttnProcessor"] = None,
403
+ out_dim: int = None,
404
+ use_tpu_flash_attention: bool = False,
405
+ use_rope: bool = False,
406
+ ):
407
+ super().__init__()
408
+ self.inner_dim = out_dim if out_dim is not None else dim_head * heads
409
+ self.query_dim = query_dim
410
+ self.use_bias = bias
411
+ self.is_cross_attention = cross_attention_dim is not None
412
+ self.cross_attention_dim = (
413
+ cross_attention_dim if cross_attention_dim is not None else query_dim
414
+ )
415
+ self.upcast_attention = upcast_attention
416
+ self.upcast_softmax = upcast_softmax
417
+ self.rescale_output_factor = rescale_output_factor
418
+ self.residual_connection = residual_connection
419
+ self.dropout = dropout
420
+ self.fused_projections = False
421
+ self.out_dim = out_dim if out_dim is not None else query_dim
422
+ self.use_tpu_flash_attention = use_tpu_flash_attention
423
+ self.use_rope = use_rope
424
+
425
+ # we make use of this private variable to know whether this class is loaded
426
+ # with an deprecated state dict so that we can convert it on the fly
427
+ self._from_deprecated_attn_block = _from_deprecated_attn_block
428
+
429
+ self.scale_qk = scale_qk
430
+ self.scale = dim_head**-0.5 if self.scale_qk else 1.0
431
+
432
+ if qk_norm is None:
433
+ self.q_norm = nn.Identity()
434
+ self.k_norm = nn.Identity()
435
+ elif qk_norm == "rms_norm":
436
+ self.q_norm = RMSNorm(dim_head * heads, eps=1e-5)
437
+ self.k_norm = RMSNorm(dim_head * heads, eps=1e-5)
438
+ elif qk_norm == "layer_norm":
439
+ self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
440
+ self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5)
441
+ else:
442
+ raise ValueError(f"Unsupported qk_norm method: {qk_norm}")
443
+
444
+ self.heads = out_dim // dim_head if out_dim is not None else heads
445
+ # for slice_size > 0 the attention score computation
446
+ # is split across the batch axis to save memory
447
+ # You can set slice_size with `set_attention_slice`
448
+ self.sliceable_head_dim = heads
449
+
450
+ self.added_kv_proj_dim = added_kv_proj_dim
451
+ self.only_cross_attention = only_cross_attention
452
+
453
+ if self.added_kv_proj_dim is None and self.only_cross_attention:
454
+ raise ValueError(
455
+ "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
456
+ )
457
+
458
+ if norm_num_groups is not None:
459
+ self.group_norm = nn.GroupNorm(
460
+ num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True
461
+ )
462
+ else:
463
+ self.group_norm = None
464
+
465
+ if spatial_norm_dim is not None:
466
+ self.spatial_norm = SpatialNorm(
467
+ f_channels=query_dim, zq_channels=spatial_norm_dim
468
+ )
469
+ else:
470
+ self.spatial_norm = None
471
+
472
+ if cross_attention_norm is None:
473
+ self.norm_cross = None
474
+ elif cross_attention_norm == "layer_norm":
475
+ self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
476
+ elif cross_attention_norm == "group_norm":
477
+ if self.added_kv_proj_dim is not None:
478
+ # The given `encoder_hidden_states` are initially of shape
479
+ # (batch_size, seq_len, added_kv_proj_dim) before being projected
480
+ # to (batch_size, seq_len, cross_attention_dim). The norm is applied
481
+ # before the projection, so we need to use `added_kv_proj_dim` as
482
+ # the number of channels for the group norm.
483
+ norm_cross_num_channels = added_kv_proj_dim
484
+ else:
485
+ norm_cross_num_channels = self.cross_attention_dim
486
+
487
+ self.norm_cross = nn.GroupNorm(
488
+ num_channels=norm_cross_num_channels,
489
+ num_groups=cross_attention_norm_num_groups,
490
+ eps=1e-5,
491
+ affine=True,
492
+ )
493
+ else:
494
+ raise ValueError(
495
+ f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
496
+ )
497
+
498
+ linear_cls = nn.Linear
499
+
500
+ self.linear_cls = linear_cls
501
+ self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias)
502
+
503
+ if not self.only_cross_attention:
504
+ # only relevant for the `AddedKVProcessor` classes
505
+ self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
506
+ self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias)
507
+ else:
508
+ self.to_k = None
509
+ self.to_v = None
510
+
511
+ if self.added_kv_proj_dim is not None:
512
+ self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
513
+ self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim)
514
+
515
+ self.to_out = nn.ModuleList([])
516
+ self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias))
517
+ self.to_out.append(nn.Dropout(dropout))
518
+
519
+ # set attention processor
520
+ # We use the AttnProcessor2_0 by default when torch 2.x is used which uses
521
+ # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
522
+ # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
523
+ if processor is None:
524
+ processor = AttnProcessor2_0()
525
+ self.set_processor(processor)
526
+
527
+ def set_use_tpu_flash_attention(self):
528
+ r"""
529
+ Function sets the flag in this object. The flag will enforce the usage of TPU attention kernel.
530
+ """
531
+ self.use_tpu_flash_attention = True
532
+
533
+ def set_processor(self, processor: "AttnProcessor") -> None:
534
+ r"""
535
+ Set the attention processor to use.
536
+
537
+ Args:
538
+ processor (`AttnProcessor`):
539
+ The attention processor to use.
540
+ """
541
+ # if current processor is in `self._modules` and if passed `processor` is not, we need to
542
+ # pop `processor` from `self._modules`
543
+ if (
544
+ hasattr(self, "processor")
545
+ and isinstance(self.processor, torch.nn.Module)
546
+ and not isinstance(processor, torch.nn.Module)
547
+ ):
548
+ logger.info(
549
+ f"You are removing possibly trained weights of {self.processor} with {processor}"
550
+ )
551
+ self._modules.pop("processor")
552
+
553
+ self.processor = processor
554
+
555
+ def get_processor(
556
+ self, return_deprecated_lora: bool = False
557
+ ) -> "AttentionProcessor": # noqa: F821
558
+ r"""
559
+ Get the attention processor in use.
560
+
561
+ Args:
562
+ return_deprecated_lora (`bool`, *optional*, defaults to `False`):
563
+ Set to `True` to return the deprecated LoRA attention processor.
564
+
565
+ Returns:
566
+ "AttentionProcessor": The attention processor in use.
567
+ """
568
+ if not return_deprecated_lora:
569
+ return self.processor
570
+
571
+ # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
572
+ # serialization format for LoRA Attention Processors. It should be deleted once the integration
573
+ # with PEFT is completed.
574
+ is_lora_activated = {
575
+ name: module.lora_layer is not None
576
+ for name, module in self.named_modules()
577
+ if hasattr(module, "lora_layer")
578
+ }
579
+
580
+ # 1. if no layer has a LoRA activated we can return the processor as usual
581
+ if not any(is_lora_activated.values()):
582
+ return self.processor
583
+
584
+ # If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
585
+ is_lora_activated.pop("add_k_proj", None)
586
+ is_lora_activated.pop("add_v_proj", None)
587
+ # 2. else it is not posssible that only some layers have LoRA activated
588
+ if not all(is_lora_activated.values()):
589
+ raise ValueError(
590
+ f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
591
+ )
592
+
593
+ # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
594
+ non_lora_processor_cls_name = self.processor.__class__.__name__
595
+ lora_processor_cls = getattr(
596
+ import_module(__name__), "LoRA" + non_lora_processor_cls_name
597
+ )
598
+
599
+ hidden_size = self.inner_dim
600
+
601
+ # now create a LoRA attention processor from the LoRA layers
602
+ if lora_processor_cls in [
603
+ LoRAAttnProcessor,
604
+ LoRAAttnProcessor2_0,
605
+ LoRAXFormersAttnProcessor,
606
+ ]:
607
+ kwargs = {
608
+ "cross_attention_dim": self.cross_attention_dim,
609
+ "rank": self.to_q.lora_layer.rank,
610
+ "network_alpha": self.to_q.lora_layer.network_alpha,
611
+ "q_rank": self.to_q.lora_layer.rank,
612
+ "q_hidden_size": self.to_q.lora_layer.out_features,
613
+ "k_rank": self.to_k.lora_layer.rank,
614
+ "k_hidden_size": self.to_k.lora_layer.out_features,
615
+ "v_rank": self.to_v.lora_layer.rank,
616
+ "v_hidden_size": self.to_v.lora_layer.out_features,
617
+ "out_rank": self.to_out[0].lora_layer.rank,
618
+ "out_hidden_size": self.to_out[0].lora_layer.out_features,
619
+ }
620
+
621
+ if hasattr(self.processor, "attention_op"):
622
+ kwargs["attention_op"] = self.processor.attention_op
623
+
624
+ lora_processor = lora_processor_cls(hidden_size, **kwargs)
625
+ lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
626
+ lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
627
+ lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
628
+ lora_processor.to_out_lora.load_state_dict(
629
+ self.to_out[0].lora_layer.state_dict()
630
+ )
631
+ elif lora_processor_cls == LoRAAttnAddedKVProcessor:
632
+ lora_processor = lora_processor_cls(
633
+ hidden_size,
634
+ cross_attention_dim=self.add_k_proj.weight.shape[0],
635
+ rank=self.to_q.lora_layer.rank,
636
+ network_alpha=self.to_q.lora_layer.network_alpha,
637
+ )
638
+ lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
639
+ lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
640
+ lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
641
+ lora_processor.to_out_lora.load_state_dict(
642
+ self.to_out[0].lora_layer.state_dict()
643
+ )
644
+
645
+ # only save if used
646
+ if self.add_k_proj.lora_layer is not None:
647
+ lora_processor.add_k_proj_lora.load_state_dict(
648
+ self.add_k_proj.lora_layer.state_dict()
649
+ )
650
+ lora_processor.add_v_proj_lora.load_state_dict(
651
+ self.add_v_proj.lora_layer.state_dict()
652
+ )
653
+ else:
654
+ lora_processor.add_k_proj_lora = None
655
+ lora_processor.add_v_proj_lora = None
656
+ else:
657
+ raise ValueError(f"{lora_processor_cls} does not exist.")
658
+
659
+ return lora_processor
660
+
661
+ def forward(
662
+ self,
663
+ hidden_states: torch.FloatTensor,
664
+ freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
665
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
666
+ attention_mask: Optional[torch.FloatTensor] = None,
667
+ skip_layer_mask: Optional[torch.Tensor] = None,
668
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
669
+ **cross_attention_kwargs,
670
+ ) -> torch.Tensor:
671
+ r"""
672
+ The forward method of the `Attention` class.
673
+
674
+ Args:
675
+ hidden_states (`torch.Tensor`):
676
+ The hidden states of the query.
677
+ encoder_hidden_states (`torch.Tensor`, *optional*):
678
+ The hidden states of the encoder.
679
+ attention_mask (`torch.Tensor`, *optional*):
680
+ The attention mask to use. If `None`, no mask is applied.
681
+ skip_layer_mask (`torch.Tensor`, *optional*):
682
+ The skip layer mask to use. If `None`, no mask is applied.
683
+ skip_layer_strategy (`SkipLayerStrategy`, *optional*, defaults to `None`):
684
+ Controls which layers to skip for spatiotemporal guidance.
685
+ **cross_attention_kwargs:
686
+ Additional keyword arguments to pass along to the cross attention.
687
+
688
+ Returns:
689
+ `torch.Tensor`: The output of the attention layer.
690
+ """
691
+ # The `Attention` class can call different attention processors / attention functions
692
+ # here we simply pass along all tensors to the selected processor class
693
+ # For standard processors that are defined here, `**cross_attention_kwargs` is empty
694
+
695
+ attn_parameters = set(
696
+ inspect.signature(self.processor.__call__).parameters.keys()
697
+ )
698
+ unused_kwargs = [
699
+ k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters
700
+ ]
701
+ if len(unused_kwargs) > 0:
702
+ logger.warning(
703
+ f"cross_attention_kwargs {unused_kwargs} are not expected by"
704
+ f" {self.processor.__class__.__name__} and will be ignored."
705
+ )
706
+ cross_attention_kwargs = {
707
+ k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters
708
+ }
709
+
710
+ return self.processor(
711
+ self,
712
+ hidden_states,
713
+ freqs_cis=freqs_cis,
714
+ encoder_hidden_states=encoder_hidden_states,
715
+ attention_mask=attention_mask,
716
+ skip_layer_mask=skip_layer_mask,
717
+ skip_layer_strategy=skip_layer_strategy,
718
+ **cross_attention_kwargs,
719
+ )
720
+
721
+ def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor:
722
+ r"""
723
+ Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads`
724
+ is the number of heads initialized while constructing the `Attention` class.
725
+
726
+ Args:
727
+ tensor (`torch.Tensor`): The tensor to reshape.
728
+
729
+ Returns:
730
+ `torch.Tensor`: The reshaped tensor.
731
+ """
732
+ head_size = self.heads
733
+ batch_size, seq_len, dim = tensor.shape
734
+ tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
735
+ tensor = tensor.permute(0, 2, 1, 3).reshape(
736
+ batch_size // head_size, seq_len, dim * head_size
737
+ )
738
+ return tensor
739
+
740
+ def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor:
741
+ r"""
742
+ Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is
743
+ the number of heads initialized while constructing the `Attention` class.
744
+
745
+ Args:
746
+ tensor (`torch.Tensor`): The tensor to reshape.
747
+ out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is
748
+ reshaped to `[batch_size * heads, seq_len, dim // heads]`.
749
+
750
+ Returns:
751
+ `torch.Tensor`: The reshaped tensor.
752
+ """
753
+
754
+ head_size = self.heads
755
+ if tensor.ndim == 3:
756
+ batch_size, seq_len, dim = tensor.shape
757
+ extra_dim = 1
758
+ else:
759
+ batch_size, extra_dim, seq_len, dim = tensor.shape
760
+ tensor = tensor.reshape(
761
+ batch_size, seq_len * extra_dim, head_size, dim // head_size
762
+ )
763
+ tensor = tensor.permute(0, 2, 1, 3)
764
+
765
+ if out_dim == 3:
766
+ tensor = tensor.reshape(
767
+ batch_size * head_size, seq_len * extra_dim, dim // head_size
768
+ )
769
+
770
+ return tensor
771
+
772
+ def get_attention_scores(
773
+ self,
774
+ query: torch.Tensor,
775
+ key: torch.Tensor,
776
+ attention_mask: torch.Tensor = None,
777
+ ) -> torch.Tensor:
778
+ r"""
779
+ Compute the attention scores.
780
+
781
+ Args:
782
+ query (`torch.Tensor`): The query tensor.
783
+ key (`torch.Tensor`): The key tensor.
784
+ attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
785
+
786
+ Returns:
787
+ `torch.Tensor`: The attention probabilities/scores.
788
+ """
789
+ dtype = query.dtype
790
+ if self.upcast_attention:
791
+ query = query.float()
792
+ key = key.float()
793
+
794
+ if attention_mask is None:
795
+ baddbmm_input = torch.empty(
796
+ query.shape[0],
797
+ query.shape[1],
798
+ key.shape[1],
799
+ dtype=query.dtype,
800
+ device=query.device,
801
+ )
802
+ beta = 0
803
+ else:
804
+ baddbmm_input = attention_mask
805
+ beta = 1
806
+
807
+ attention_scores = torch.baddbmm(
808
+ baddbmm_input,
809
+ query,
810
+ key.transpose(-1, -2),
811
+ beta=beta,
812
+ alpha=self.scale,
813
+ )
814
+ del baddbmm_input
815
+
816
+ if self.upcast_softmax:
817
+ attention_scores = attention_scores.float()
818
+
819
+ attention_probs = attention_scores.softmax(dim=-1)
820
+ del attention_scores
821
+
822
+ attention_probs = attention_probs.to(dtype)
823
+
824
+ return attention_probs
825
+
826
+ def prepare_attention_mask(
827
+ self,
828
+ attention_mask: torch.Tensor,
829
+ target_length: int,
830
+ batch_size: int,
831
+ out_dim: int = 3,
832
+ ) -> torch.Tensor:
833
+ r"""
834
+ Prepare the attention mask for the attention computation.
835
+
836
+ Args:
837
+ attention_mask (`torch.Tensor`):
838
+ The attention mask to prepare.
839
+ target_length (`int`):
840
+ The target length of the attention mask. This is the length of the attention mask after padding.
841
+ batch_size (`int`):
842
+ The batch size, which is used to repeat the attention mask.
843
+ out_dim (`int`, *optional*, defaults to `3`):
844
+ The output dimension of the attention mask. Can be either `3` or `4`.
845
+
846
+ Returns:
847
+ `torch.Tensor`: The prepared attention mask.
848
+ """
849
+ head_size = self.heads
850
+ if attention_mask is None:
851
+ return attention_mask
852
+
853
+ current_length: int = attention_mask.shape[-1]
854
+ if current_length != target_length:
855
+ if attention_mask.device.type == "mps":
856
+ # HACK: MPS: Does not support padding by greater than dimension of input tensor.
857
+ # Instead, we can manually construct the padding tensor.
858
+ padding_shape = (
859
+ attention_mask.shape[0],
860
+ attention_mask.shape[1],
861
+ target_length,
862
+ )
863
+ padding = torch.zeros(
864
+ padding_shape,
865
+ dtype=attention_mask.dtype,
866
+ device=attention_mask.device,
867
+ )
868
+ attention_mask = torch.cat([attention_mask, padding], dim=2)
869
+ else:
870
+ # TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
871
+ # we want to instead pad by (0, remaining_length), where remaining_length is:
872
+ # remaining_length: int = target_length - current_length
873
+ # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
874
+ attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
875
+
876
+ if out_dim == 3:
877
+ if attention_mask.shape[0] < batch_size * head_size:
878
+ attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
879
+ elif out_dim == 4:
880
+ attention_mask = attention_mask.unsqueeze(1)
881
+ attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
882
+
883
+ return attention_mask
884
+
885
+ def norm_encoder_hidden_states(
886
+ self, encoder_hidden_states: torch.Tensor
887
+ ) -> torch.Tensor:
888
+ r"""
889
+ Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the
890
+ `Attention` class.
891
+
892
+ Args:
893
+ encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder.
894
+
895
+ Returns:
896
+ `torch.Tensor`: The normalized encoder hidden states.
897
+ """
898
+ assert (
899
+ self.norm_cross is not None
900
+ ), "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
901
+
902
+ if isinstance(self.norm_cross, nn.LayerNorm):
903
+ encoder_hidden_states = self.norm_cross(encoder_hidden_states)
904
+ elif isinstance(self.norm_cross, nn.GroupNorm):
905
+ # Group norm norms along the channels dimension and expects
906
+ # input to be in the shape of (N, C, *). In this case, we want
907
+ # to norm along the hidden dimension, so we need to move
908
+ # (batch_size, sequence_length, hidden_size) ->
909
+ # (batch_size, hidden_size, sequence_length)
910
+ encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
911
+ encoder_hidden_states = self.norm_cross(encoder_hidden_states)
912
+ encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
913
+ else:
914
+ assert False
915
+
916
+ return encoder_hidden_states
917
+
918
+ @staticmethod
919
+ def apply_rotary_emb(
920
+ input_tensor: torch.Tensor,
921
+ freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
922
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
923
+ cos_freqs = freqs_cis[0]
924
+ sin_freqs = freqs_cis[1]
925
+
926
+ t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
927
+ t1, t2 = t_dup.unbind(dim=-1)
928
+ t_dup = torch.stack((-t2, t1), dim=-1)
929
+ input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)")
930
+
931
+ out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs
932
+
933
+ return out
934
+
935
+
936
+ class AttnProcessor2_0:
937
+ r"""
938
+ Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
939
+ """
940
+
941
+ def __init__(self):
942
+ pass
943
+
944
+ def __call__(
945
+ self,
946
+ attn: Attention,
947
+ hidden_states: torch.FloatTensor,
948
+ freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor],
949
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
950
+ attention_mask: Optional[torch.FloatTensor] = None,
951
+ temb: Optional[torch.FloatTensor] = None,
952
+ skip_layer_mask: Optional[torch.FloatTensor] = None,
953
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
954
+ *args,
955
+ **kwargs,
956
+ ) -> torch.FloatTensor:
957
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
958
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
959
+ deprecate("scale", "1.0.0", deprecation_message)
960
+
961
+ residual = hidden_states
962
+ if attn.spatial_norm is not None:
963
+ hidden_states = attn.spatial_norm(hidden_states, temb)
964
+
965
+ input_ndim = hidden_states.ndim
966
+
967
+ if input_ndim == 4:
968
+ batch_size, channel, height, width = hidden_states.shape
969
+ hidden_states = hidden_states.view(
970
+ batch_size, channel, height * width
971
+ ).transpose(1, 2)
972
+
973
+ batch_size, sequence_length, _ = (
974
+ hidden_states.shape
975
+ if encoder_hidden_states is None
976
+ else encoder_hidden_states.shape
977
+ )
978
+
979
+ if skip_layer_mask is not None:
980
+ skip_layer_mask = skip_layer_mask.reshape(batch_size, 1, 1)
981
+
982
+ if (attention_mask is not None) and (not attn.use_tpu_flash_attention):
983
+ attention_mask = attn.prepare_attention_mask(
984
+ attention_mask, sequence_length, batch_size
985
+ )
986
+ # scaled_dot_product_attention expects attention_mask shape to be
987
+ # (batch, heads, source_length, target_length)
988
+ attention_mask = attention_mask.view(
989
+ batch_size, attn.heads, -1, attention_mask.shape[-1]
990
+ )
991
+
992
+ if attn.group_norm is not None:
993
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
994
+ 1, 2
995
+ )
996
+
997
+ query = attn.to_q(hidden_states)
998
+ query = attn.q_norm(query)
999
+
1000
+ if encoder_hidden_states is not None:
1001
+ if attn.norm_cross:
1002
+ encoder_hidden_states = attn.norm_encoder_hidden_states(
1003
+ encoder_hidden_states
1004
+ )
1005
+ key = attn.to_k(encoder_hidden_states)
1006
+ key = attn.k_norm(key)
1007
+ else: # if no context provided do self-attention
1008
+ encoder_hidden_states = hidden_states
1009
+ key = attn.to_k(hidden_states)
1010
+ key = attn.k_norm(key)
1011
+ if attn.use_rope:
1012
+ key = attn.apply_rotary_emb(key, freqs_cis)
1013
+ query = attn.apply_rotary_emb(query, freqs_cis)
1014
+
1015
+ value = attn.to_v(encoder_hidden_states)
1016
+ value_for_stg = value
1017
+
1018
+ inner_dim = key.shape[-1]
1019
+ head_dim = inner_dim // attn.heads
1020
+
1021
+ query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1022
+ key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1023
+ value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
1024
+
1025
+ # the output of sdp = (batch, num_heads, seq_len, head_dim)
1026
+
1027
+ if attn.use_tpu_flash_attention: # use tpu attention offload 'flash attention'
1028
+ q_segment_indexes = None
1029
+ if (
1030
+ attention_mask is not None
1031
+ ): # if mask is required need to tune both segmenIds fields
1032
+ # attention_mask = torch.squeeze(attention_mask).to(torch.float32)
1033
+ attention_mask = attention_mask.to(torch.float32)
1034
+ q_segment_indexes = torch.ones(
1035
+ batch_size, query.shape[2], device=query.device, dtype=torch.float32
1036
+ )
1037
+ assert (
1038
+ attention_mask.shape[1] == key.shape[2]
1039
+ ), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]"
1040
+
1041
+ assert (
1042
+ query.shape[2] % 128 == 0
1043
+ ), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]"
1044
+ assert (
1045
+ key.shape[2] % 128 == 0
1046
+ ), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]"
1047
+
1048
+ # run the TPU kernel implemented in jax with pallas
1049
+ hidden_states_a = flash_attention(
1050
+ q=query,
1051
+ k=key,
1052
+ v=value,
1053
+ q_segment_ids=q_segment_indexes,
1054
+ kv_segment_ids=attention_mask,
1055
+ sm_scale=attn.scale,
1056
+ )
1057
+ else:
1058
+ hidden_states_a = F.scaled_dot_product_attention(
1059
+ query,
1060
+ key,
1061
+ value,
1062
+ attn_mask=attention_mask,
1063
+ dropout_p=0.0,
1064
+ is_causal=False,
1065
+ )
1066
+
1067
+ hidden_states_a = hidden_states_a.transpose(1, 2).reshape(
1068
+ batch_size, -1, attn.heads * head_dim
1069
+ )
1070
+ hidden_states_a = hidden_states_a.to(query.dtype)
1071
+
1072
+ if (
1073
+ skip_layer_mask is not None
1074
+ and skip_layer_strategy == SkipLayerStrategy.AttentionSkip
1075
+ ):
1076
+ hidden_states = hidden_states_a * skip_layer_mask + hidden_states * (
1077
+ 1.0 - skip_layer_mask
1078
+ )
1079
+ elif (
1080
+ skip_layer_mask is not None
1081
+ and skip_layer_strategy == SkipLayerStrategy.AttentionValues
1082
+ ):
1083
+ hidden_states = hidden_states_a * skip_layer_mask + value_for_stg * (
1084
+ 1.0 - skip_layer_mask
1085
+ )
1086
+ else:
1087
+ hidden_states = hidden_states_a
1088
+
1089
+ # linear proj
1090
+ hidden_states = attn.to_out[0](hidden_states)
1091
+ # dropout
1092
+ hidden_states = attn.to_out[1](hidden_states)
1093
+
1094
+ if input_ndim == 4:
1095
+ hidden_states = hidden_states.transpose(-1, -2).reshape(
1096
+ batch_size, channel, height, width
1097
+ )
1098
+ if (
1099
+ skip_layer_mask is not None
1100
+ and skip_layer_strategy == SkipLayerStrategy.Residual
1101
+ ):
1102
+ skip_layer_mask = skip_layer_mask.reshape(batch_size, 1, 1, 1)
1103
+
1104
+ if attn.residual_connection:
1105
+ if (
1106
+ skip_layer_mask is not None
1107
+ and skip_layer_strategy == SkipLayerStrategy.Residual
1108
+ ):
1109
+ hidden_states = hidden_states + residual * skip_layer_mask
1110
+ else:
1111
+ hidden_states = hidden_states + residual
1112
+
1113
+ hidden_states = hidden_states / attn.rescale_output_factor
1114
+
1115
+ return hidden_states
1116
+
1117
+
1118
+ class AttnProcessor:
1119
+ r"""
1120
+ Default processor for performing attention-related computations.
1121
+ """
1122
+
1123
+ def __call__(
1124
+ self,
1125
+ attn: Attention,
1126
+ hidden_states: torch.FloatTensor,
1127
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
1128
+ attention_mask: Optional[torch.FloatTensor] = None,
1129
+ temb: Optional[torch.FloatTensor] = None,
1130
+ *args,
1131
+ **kwargs,
1132
+ ) -> torch.Tensor:
1133
+ if len(args) > 0 or kwargs.get("scale", None) is not None:
1134
+ deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
1135
+ deprecate("scale", "1.0.0", deprecation_message)
1136
+
1137
+ residual = hidden_states
1138
+
1139
+ if attn.spatial_norm is not None:
1140
+ hidden_states = attn.spatial_norm(hidden_states, temb)
1141
+
1142
+ input_ndim = hidden_states.ndim
1143
+
1144
+ if input_ndim == 4:
1145
+ batch_size, channel, height, width = hidden_states.shape
1146
+ hidden_states = hidden_states.view(
1147
+ batch_size, channel, height * width
1148
+ ).transpose(1, 2)
1149
+
1150
+ batch_size, sequence_length, _ = (
1151
+ hidden_states.shape
1152
+ if encoder_hidden_states is None
1153
+ else encoder_hidden_states.shape
1154
+ )
1155
+ attention_mask = attn.prepare_attention_mask(
1156
+ attention_mask, sequence_length, batch_size
1157
+ )
1158
+
1159
+ if attn.group_norm is not None:
1160
+ hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
1161
+ 1, 2
1162
+ )
1163
+
1164
+ query = attn.to_q(hidden_states)
1165
+
1166
+ if encoder_hidden_states is None:
1167
+ encoder_hidden_states = hidden_states
1168
+ elif attn.norm_cross:
1169
+ encoder_hidden_states = attn.norm_encoder_hidden_states(
1170
+ encoder_hidden_states
1171
+ )
1172
+
1173
+ key = attn.to_k(encoder_hidden_states)
1174
+ value = attn.to_v(encoder_hidden_states)
1175
+
1176
+ query = attn.head_to_batch_dim(query)
1177
+ key = attn.head_to_batch_dim(key)
1178
+ value = attn.head_to_batch_dim(value)
1179
+
1180
+ query = attn.q_norm(query)
1181
+ key = attn.k_norm(key)
1182
+
1183
+ attention_probs = attn.get_attention_scores(query, key, attention_mask)
1184
+ hidden_states = torch.bmm(attention_probs, value)
1185
+ hidden_states = attn.batch_to_head_dim(hidden_states)
1186
+
1187
+ # linear proj
1188
+ hidden_states = attn.to_out[0](hidden_states)
1189
+ # dropout
1190
+ hidden_states = attn.to_out[1](hidden_states)
1191
+
1192
+ if input_ndim == 4:
1193
+ hidden_states = hidden_states.transpose(-1, -2).reshape(
1194
+ batch_size, channel, height, width
1195
+ )
1196
+
1197
+ if attn.residual_connection:
1198
+ hidden_states = hidden_states + residual
1199
+
1200
+ hidden_states = hidden_states / attn.rescale_output_factor
1201
+
1202
+ return hidden_states
1203
+
1204
+
1205
+ class FeedForward(nn.Module):
1206
+ r"""
1207
+ A feed-forward layer.
1208
+
1209
+ Parameters:
1210
+ dim (`int`): The number of channels in the input.
1211
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
1212
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
1213
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
1214
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
1215
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
1216
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
1217
+ """
1218
+
1219
+ def __init__(
1220
+ self,
1221
+ dim: int,
1222
+ dim_out: Optional[int] = None,
1223
+ mult: int = 4,
1224
+ dropout: float = 0.0,
1225
+ activation_fn: str = "geglu",
1226
+ final_dropout: bool = False,
1227
+ inner_dim=None,
1228
+ bias: bool = True,
1229
+ ):
1230
+ super().__init__()
1231
+ if inner_dim is None:
1232
+ inner_dim = int(dim * mult)
1233
+ dim_out = dim_out if dim_out is not None else dim
1234
+ linear_cls = nn.Linear
1235
+
1236
+ if activation_fn == "gelu":
1237
+ act_fn = GELU(dim, inner_dim, bias=bias)
1238
+ elif activation_fn == "gelu-approximate":
1239
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
1240
+ elif activation_fn == "geglu":
1241
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
1242
+ elif activation_fn == "geglu-approximate":
1243
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
1244
+ else:
1245
+ raise ValueError(f"Unsupported activation function: {activation_fn}")
1246
+
1247
+ self.net = nn.ModuleList([])
1248
+ # project in
1249
+ self.net.append(act_fn)
1250
+ # project dropout
1251
+ self.net.append(nn.Dropout(dropout))
1252
+ # project out
1253
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
1254
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
1255
+ if final_dropout:
1256
+ self.net.append(nn.Dropout(dropout))
1257
+
1258
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
1259
+ compatible_cls = (GEGLU, LoRACompatibleLinear)
1260
+ for module in self.net:
1261
+ if isinstance(module, compatible_cls):
1262
+ hidden_states = module(hidden_states, scale)
1263
+ else:
1264
+ hidden_states = module(hidden_states)
1265
+ return hidden_states
ltx_video/models/transformers/embeddings.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py
2
+ import math
3
+
4
+ import numpy as np
5
+ import torch
6
+ from einops import rearrange
7
+ from torch import nn
8
+
9
+
10
+ def get_timestep_embedding(
11
+ timesteps: torch.Tensor,
12
+ embedding_dim: int,
13
+ flip_sin_to_cos: bool = False,
14
+ downscale_freq_shift: float = 1,
15
+ scale: float = 1,
16
+ max_period: int = 10000,
17
+ ):
18
+ """
19
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
20
+
21
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
22
+ These may be fractional.
23
+ :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
24
+ embeddings. :return: an [N x dim] Tensor of positional embeddings.
25
+ """
26
+ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
27
+
28
+ half_dim = embedding_dim // 2
29
+ exponent = -math.log(max_period) * torch.arange(
30
+ start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
31
+ )
32
+ exponent = exponent / (half_dim - downscale_freq_shift)
33
+
34
+ emb = torch.exp(exponent)
35
+ emb = timesteps[:, None].float() * emb[None, :]
36
+
37
+ # scale embeddings
38
+ emb = scale * emb
39
+
40
+ # concat sine and cosine embeddings
41
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
42
+
43
+ # flip sine and cosine embeddings
44
+ if flip_sin_to_cos:
45
+ emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
46
+
47
+ # zero pad
48
+ if embedding_dim % 2 == 1:
49
+ emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
50
+ return emb
51
+
52
+
53
+ def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f):
54
+ """
55
+ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
56
+ [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
57
+ """
58
+ grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w)
59
+ grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w)
60
+ grid = grid.reshape([3, 1, w, h, f])
61
+ pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid)
62
+ pos_embed = pos_embed.transpose(1, 0, 2, 3)
63
+ return rearrange(pos_embed, "h w f c -> (f h w) c")
64
+
65
+
66
+ def get_3d_sincos_pos_embed_from_grid(embed_dim, grid):
67
+ if embed_dim % 3 != 0:
68
+ raise ValueError("embed_dim must be divisible by 3")
69
+
70
+ # use half of dimensions to encode grid_h
71
+ emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) # (H*W*T, D/3)
72
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) # (H*W*T, D/3)
73
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) # (H*W*T, D/3)
74
+
75
+ emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) # (H*W*T, D)
76
+ return emb
77
+
78
+
79
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
80
+ """
81
+ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
82
+ """
83
+ if embed_dim % 2 != 0:
84
+ raise ValueError("embed_dim must be divisible by 2")
85
+
86
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
87
+ omega /= embed_dim / 2.0
88
+ omega = 1.0 / 10000**omega # (D/2,)
89
+
90
+ pos_shape = pos.shape
91
+
92
+ pos = pos.reshape(-1)
93
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
94
+ out = out.reshape([*pos_shape, -1])[0]
95
+
96
+ emb_sin = np.sin(out) # (M, D/2)
97
+ emb_cos = np.cos(out) # (M, D/2)
98
+
99
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (M, D)
100
+ return emb
101
+
102
+
103
+ class SinusoidalPositionalEmbedding(nn.Module):
104
+ """Apply positional information to a sequence of embeddings.
105
+
106
+ Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
107
+ them
108
+
109
+ Args:
110
+ embed_dim: (int): Dimension of the positional embedding.
111
+ max_seq_length: Maximum sequence length to apply positional embeddings
112
+
113
+ """
114
+
115
+ def __init__(self, embed_dim: int, max_seq_length: int = 32):
116
+ super().__init__()
117
+ position = torch.arange(max_seq_length).unsqueeze(1)
118
+ div_term = torch.exp(
119
+ torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)
120
+ )
121
+ pe = torch.zeros(1, max_seq_length, embed_dim)
122
+ pe[0, :, 0::2] = torch.sin(position * div_term)
123
+ pe[0, :, 1::2] = torch.cos(position * div_term)
124
+ self.register_buffer("pe", pe)
125
+
126
+ def forward(self, x):
127
+ _, seq_length, _ = x.shape
128
+ x = x + self.pe[:, :seq_length]
129
+ return x
ltx_video/models/transformers/symmetric_patchifier.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC, abstractmethod
2
+ from typing import Tuple
3
+
4
+ import torch
5
+ from diffusers.configuration_utils import ConfigMixin
6
+ from einops import rearrange
7
+ from torch import Tensor
8
+
9
+
10
+ class Patchifier(ConfigMixin, ABC):
11
+ def __init__(self, patch_size: int):
12
+ super().__init__()
13
+ self._patch_size = (1, patch_size, patch_size)
14
+
15
+ @abstractmethod
16
+ def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
17
+ raise NotImplementedError("Patchify method not implemented")
18
+
19
+ @abstractmethod
20
+ def unpatchify(
21
+ self,
22
+ latents: Tensor,
23
+ output_height: int,
24
+ output_width: int,
25
+ out_channels: int,
26
+ ) -> Tuple[Tensor, Tensor]:
27
+ pass
28
+
29
+ @property
30
+ def patch_size(self):
31
+ return self._patch_size
32
+
33
+ def get_latent_coords(
34
+ self, latent_num_frames, latent_height, latent_width, batch_size, device
35
+ ):
36
+ """
37
+ Return a tensor of shape [batch_size, 3, num_patches] containing the
38
+ top-left corner latent coordinates of each latent patch.
39
+ The tensor is repeated for each batch element.
40
+ """
41
+ latent_sample_coords = torch.meshgrid(
42
+ torch.arange(0, latent_num_frames, self._patch_size[0], device=device),
43
+ torch.arange(0, latent_height, self._patch_size[1], device=device),
44
+ torch.arange(0, latent_width, self._patch_size[2], device=device),
45
+ )
46
+ latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
47
+ latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
48
+ latent_coords = rearrange(
49
+ latent_coords, "b c f h w -> b c (f h w)", b=batch_size
50
+ )
51
+ return latent_coords
52
+
53
+
54
+ class SymmetricPatchifier(Patchifier):
55
+ def patchify(self, latents: Tensor) -> Tuple[Tensor, Tensor]:
56
+ b, _, f, h, w = latents.shape
57
+ latent_coords = self.get_latent_coords(f, h, w, b, latents.device)
58
+ latents = rearrange(
59
+ latents,
60
+ "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)",
61
+ p1=self._patch_size[0],
62
+ p2=self._patch_size[1],
63
+ p3=self._patch_size[2],
64
+ )
65
+ return latents, latent_coords
66
+
67
+ def unpatchify(
68
+ self,
69
+ latents: Tensor,
70
+ output_height: int,
71
+ output_width: int,
72
+ out_channels: int,
73
+ ) -> Tuple[Tensor, Tensor]:
74
+ output_height = output_height // self._patch_size[1]
75
+ output_width = output_width // self._patch_size[2]
76
+ latents = rearrange(
77
+ latents,
78
+ "b (f h w) (c p q) -> b c f (h p) (w q)",
79
+ h=output_height,
80
+ w=output_width,
81
+ p=self._patch_size[1],
82
+ q=self._patch_size[2],
83
+ )
84
+ return latents
ltx_video/models/transformers/transformer3d.py ADDED
@@ -0,0 +1,507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py
2
+ import math
3
+ from dataclasses import dataclass
4
+ from typing import Any, Dict, List, Optional, Union
5
+ import os
6
+ import json
7
+ import glob
8
+ from pathlib import Path
9
+
10
+ import torch
11
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
12
+ from diffusers.models.embeddings import PixArtAlphaTextProjection
13
+ from diffusers.models.modeling_utils import ModelMixin
14
+ from diffusers.models.normalization import AdaLayerNormSingle
15
+ from diffusers.utils import BaseOutput, is_torch_version
16
+ from diffusers.utils import logging
17
+ from torch import nn
18
+ from safetensors import safe_open
19
+
20
+
21
+ from ltx_video.models.transformers.attention import BasicTransformerBlock
22
+ from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
23
+
24
+ from ltx_video.utils.diffusers_config_mapping import (
25
+ diffusers_and_ours_config_mapping,
26
+ make_hashable_key,
27
+ TRANSFORMER_KEYS_RENAME_DICT,
28
+ )
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ @dataclass
35
+ class Transformer3DModelOutput(BaseOutput):
36
+ """
37
+ The output of [`Transformer2DModel`].
38
+
39
+ Args:
40
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
41
+ The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
42
+ distributions for the unnoised latent pixels.
43
+ """
44
+
45
+ sample: torch.FloatTensor
46
+
47
+
48
+ class Transformer3DModel(ModelMixin, ConfigMixin):
49
+ _supports_gradient_checkpointing = True
50
+
51
+ @register_to_config
52
+ def __init__(
53
+ self,
54
+ num_attention_heads: int = 16,
55
+ attention_head_dim: int = 88,
56
+ in_channels: Optional[int] = None,
57
+ out_channels: Optional[int] = None,
58
+ num_layers: int = 1,
59
+ dropout: float = 0.0,
60
+ norm_num_groups: int = 32,
61
+ cross_attention_dim: Optional[int] = None,
62
+ attention_bias: bool = False,
63
+ num_vector_embeds: Optional[int] = None,
64
+ activation_fn: str = "geglu",
65
+ num_embeds_ada_norm: Optional[int] = None,
66
+ use_linear_projection: bool = False,
67
+ only_cross_attention: bool = False,
68
+ double_self_attention: bool = False,
69
+ upcast_attention: bool = False,
70
+ adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale'
71
+ standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm'
72
+ norm_elementwise_affine: bool = True,
73
+ norm_eps: float = 1e-5,
74
+ attention_type: str = "default",
75
+ caption_channels: int = None,
76
+ use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention')
77
+ qk_norm: Optional[str] = None,
78
+ positional_embedding_type: str = "rope",
79
+ positional_embedding_theta: Optional[float] = None,
80
+ positional_embedding_max_pos: Optional[List[int]] = None,
81
+ timestep_scale_multiplier: Optional[float] = None,
82
+ causal_temporal_positioning: bool = False, # For backward compatibility, will be deprecated
83
+ ):
84
+ super().__init__()
85
+ self.use_tpu_flash_attention = (
86
+ use_tpu_flash_attention # FIXME: push config down to the attention modules
87
+ )
88
+ self.use_linear_projection = use_linear_projection
89
+ self.num_attention_heads = num_attention_heads
90
+ self.attention_head_dim = attention_head_dim
91
+ inner_dim = num_attention_heads * attention_head_dim
92
+ self.inner_dim = inner_dim
93
+ self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
94
+ self.positional_embedding_type = positional_embedding_type
95
+ self.positional_embedding_theta = positional_embedding_theta
96
+ self.positional_embedding_max_pos = positional_embedding_max_pos
97
+ self.use_rope = self.positional_embedding_type == "rope"
98
+ self.timestep_scale_multiplier = timestep_scale_multiplier
99
+
100
+ if self.positional_embedding_type == "absolute":
101
+ raise ValueError("Absolute positional embedding is no longer supported")
102
+ elif self.positional_embedding_type == "rope":
103
+ if positional_embedding_theta is None:
104
+ raise ValueError(
105
+ "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
106
+ )
107
+ if positional_embedding_max_pos is None:
108
+ raise ValueError(
109
+ "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
110
+ )
111
+
112
+ # 3. Define transformers blocks
113
+ self.transformer_blocks = nn.ModuleList(
114
+ [
115
+ BasicTransformerBlock(
116
+ inner_dim,
117
+ num_attention_heads,
118
+ attention_head_dim,
119
+ dropout=dropout,
120
+ cross_attention_dim=cross_attention_dim,
121
+ activation_fn=activation_fn,
122
+ num_embeds_ada_norm=num_embeds_ada_norm,
123
+ attention_bias=attention_bias,
124
+ only_cross_attention=only_cross_attention,
125
+ double_self_attention=double_self_attention,
126
+ upcast_attention=upcast_attention,
127
+ adaptive_norm=adaptive_norm,
128
+ standardization_norm=standardization_norm,
129
+ norm_elementwise_affine=norm_elementwise_affine,
130
+ norm_eps=norm_eps,
131
+ attention_type=attention_type,
132
+ use_tpu_flash_attention=use_tpu_flash_attention,
133
+ qk_norm=qk_norm,
134
+ use_rope=self.use_rope,
135
+ )
136
+ for d in range(num_layers)
137
+ ]
138
+ )
139
+
140
+ # 4. Define output layers
141
+ self.out_channels = in_channels if out_channels is None else out_channels
142
+ self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
143
+ self.scale_shift_table = nn.Parameter(
144
+ torch.randn(2, inner_dim) / inner_dim**0.5
145
+ )
146
+ self.proj_out = nn.Linear(inner_dim, self.out_channels)
147
+
148
+ self.adaln_single = AdaLayerNormSingle(
149
+ inner_dim, use_additional_conditions=False
150
+ )
151
+ if adaptive_norm == "single_scale":
152
+ self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
153
+
154
+ self.caption_projection = None
155
+ if caption_channels is not None:
156
+ self.caption_projection = PixArtAlphaTextProjection(
157
+ in_features=caption_channels, hidden_size=inner_dim
158
+ )
159
+
160
+ self.gradient_checkpointing = False
161
+
162
+ def set_use_tpu_flash_attention(self):
163
+ r"""
164
+ Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
165
+ attention kernel.
166
+ """
167
+ logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
168
+ self.use_tpu_flash_attention = True
169
+ # push config down to the attention modules
170
+ for block in self.transformer_blocks:
171
+ block.set_use_tpu_flash_attention()
172
+
173
+ def create_skip_layer_mask(
174
+ self,
175
+ batch_size: int,
176
+ num_conds: int,
177
+ ptb_index: int,
178
+ skip_block_list: Optional[List[int]] = None,
179
+ ):
180
+ if skip_block_list is None or len(skip_block_list) == 0:
181
+ return None
182
+ num_layers = len(self.transformer_blocks)
183
+ mask = torch.ones(
184
+ (num_layers, batch_size * num_conds), device=self.device, dtype=self.dtype
185
+ )
186
+ for block_idx in skip_block_list:
187
+ mask[block_idx, ptb_index::num_conds] = 0
188
+ return mask
189
+
190
+ def _set_gradient_checkpointing(self, module, value=False):
191
+ if hasattr(module, "gradient_checkpointing"):
192
+ module.gradient_checkpointing = value
193
+
194
+ def get_fractional_positions(self, indices_grid):
195
+ fractional_positions = torch.stack(
196
+ [
197
+ indices_grid[:, i] / self.positional_embedding_max_pos[i]
198
+ for i in range(3)
199
+ ],
200
+ dim=-1,
201
+ )
202
+ return fractional_positions
203
+
204
+ def precompute_freqs_cis(self, indices_grid, spacing="exp"):
205
+ dtype = torch.float32 # We need full precision in the freqs_cis computation.
206
+ dim = self.inner_dim
207
+ theta = self.positional_embedding_theta
208
+
209
+ fractional_positions = self.get_fractional_positions(indices_grid)
210
+
211
+ start = 1
212
+ end = theta
213
+ device = fractional_positions.device
214
+ if spacing == "exp":
215
+ indices = theta ** (
216
+ torch.linspace(
217
+ math.log(start, theta),
218
+ math.log(end, theta),
219
+ dim // 6,
220
+ device=device,
221
+ dtype=dtype,
222
+ )
223
+ )
224
+ indices = indices.to(dtype=dtype)
225
+ elif spacing == "exp_2":
226
+ indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
227
+ indices = indices.to(dtype=dtype)
228
+ elif spacing == "linear":
229
+ indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
230
+ elif spacing == "sqrt":
231
+ indices = torch.linspace(
232
+ start**2, end**2, dim // 6, device=device, dtype=dtype
233
+ ).sqrt()
234
+
235
+ indices = indices * math.pi / 2
236
+
237
+ if spacing == "exp_2":
238
+ freqs = (
239
+ (indices * fractional_positions.unsqueeze(-1))
240
+ .transpose(-1, -2)
241
+ .flatten(2)
242
+ )
243
+ else:
244
+ freqs = (
245
+ (indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
246
+ .transpose(-1, -2)
247
+ .flatten(2)
248
+ )
249
+
250
+ cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
251
+ sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
252
+ if dim % 6 != 0:
253
+ cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
254
+ sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
255
+ cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
256
+ sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
257
+ return cos_freq.to(self.dtype), sin_freq.to(self.dtype)
258
+
259
+ def load_state_dict(
260
+ self,
261
+ state_dict: Dict,
262
+ *args,
263
+ **kwargs,
264
+ ):
265
+ if any([key.startswith("model.diffusion_model.") for key in state_dict.keys()]):
266
+ state_dict = {
267
+ key.replace("model.diffusion_model.", ""): value
268
+ for key, value in state_dict.items()
269
+ if key.startswith("model.diffusion_model.")
270
+ }
271
+ super().load_state_dict(state_dict, **kwargs)
272
+
273
+ @classmethod
274
+ def from_pretrained(
275
+ cls,
276
+ pretrained_model_path: Optional[Union[str, os.PathLike]],
277
+ *args,
278
+ **kwargs,
279
+ ):
280
+ pretrained_model_path = Path(pretrained_model_path)
281
+ if pretrained_model_path.is_dir():
282
+ config_path = pretrained_model_path / "transformer" / "config.json"
283
+ with open(config_path, "r") as f:
284
+ config = make_hashable_key(json.load(f))
285
+
286
+ assert config in diffusers_and_ours_config_mapping, (
287
+ "Provided diffusers checkpoint config for transformer is not suppported. "
288
+ "We only support diffusers configs found in Lightricks/LTX-Video."
289
+ )
290
+
291
+ config = diffusers_and_ours_config_mapping[config]
292
+ state_dict = {}
293
+ ckpt_paths = (
294
+ pretrained_model_path
295
+ / "transformer"
296
+ / "diffusion_pytorch_model*.safetensors"
297
+ )
298
+ dict_list = glob.glob(str(ckpt_paths))
299
+ for dict_path in dict_list:
300
+ part_dict = {}
301
+ with safe_open(dict_path, framework="pt", device="cpu") as f:
302
+ for k in f.keys():
303
+ part_dict[k] = f.get_tensor(k)
304
+ state_dict.update(part_dict)
305
+
306
+ for key in list(state_dict.keys()):
307
+ new_key = key
308
+ for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
309
+ new_key = new_key.replace(replace_key, rename_key)
310
+ state_dict[new_key] = state_dict.pop(key)
311
+
312
+ with torch.device("meta"):
313
+ transformer = cls.from_config(config)
314
+ transformer.load_state_dict(state_dict, assign=True, strict=True)
315
+ elif pretrained_model_path.is_file() and str(pretrained_model_path).endswith(
316
+ ".safetensors"
317
+ ):
318
+ comfy_single_file_state_dict = {}
319
+ with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
320
+ metadata = f.metadata()
321
+ for k in f.keys():
322
+ comfy_single_file_state_dict[k] = f.get_tensor(k)
323
+ configs = json.loads(metadata["config"])
324
+ transformer_config = configs["transformer"]
325
+ with torch.device("meta"):
326
+ transformer = Transformer3DModel.from_config(transformer_config)
327
+ transformer.load_state_dict(comfy_single_file_state_dict, assign=True)
328
+ return transformer
329
+
330
+ def forward(
331
+ self,
332
+ hidden_states: torch.Tensor,
333
+ indices_grid: torch.Tensor,
334
+ encoder_hidden_states: Optional[torch.Tensor] = None,
335
+ timestep: Optional[torch.LongTensor] = None,
336
+ class_labels: Optional[torch.LongTensor] = None,
337
+ cross_attention_kwargs: Dict[str, Any] = None,
338
+ attention_mask: Optional[torch.Tensor] = None,
339
+ encoder_attention_mask: Optional[torch.Tensor] = None,
340
+ skip_layer_mask: Optional[torch.Tensor] = None,
341
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
342
+ return_dict: bool = True,
343
+ ):
344
+ """
345
+ The [`Transformer2DModel`] forward method.
346
+
347
+ Args:
348
+ hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
349
+ Input `hidden_states`.
350
+ indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
351
+ encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
352
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
353
+ self-attention.
354
+ timestep ( `torch.LongTensor`, *optional*):
355
+ Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
356
+ class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
357
+ Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
358
+ `AdaLayerZeroNorm`.
359
+ cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
360
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
361
+ `self.processor` in
362
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
363
+ attention_mask ( `torch.Tensor`, *optional*):
364
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
365
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
366
+ negative values to the attention scores corresponding to "discard" tokens.
367
+ encoder_attention_mask ( `torch.Tensor`, *optional*):
368
+ Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
369
+
370
+ * Mask `(batch, sequence_length)` True = keep, False = discard.
371
+ * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
372
+
373
+ If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
374
+ above. This bias will be added to the cross-attention scores.
375
+ skip_layer_mask ( `torch.Tensor`, *optional*):
376
+ A mask of shape `(num_layers, batch)` that indicates which layers to skip. `0` at position
377
+ `layer, batch_idx` indicates that the layer should be skipped for the corresponding batch index.
378
+ skip_layer_strategy ( `SkipLayerStrategy`, *optional*, defaults to `None`):
379
+ Controls which layers are skipped when calculating a perturbed latent for spatiotemporal guidance.
380
+ return_dict (`bool`, *optional*, defaults to `True`):
381
+ Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
382
+ tuple.
383
+
384
+ Returns:
385
+ If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
386
+ `tuple` where the first element is the sample tensor.
387
+ """
388
+ # for tpu attention offload 2d token masks are used. No need to transform.
389
+ if not self.use_tpu_flash_attention:
390
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
391
+ # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
392
+ # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
393
+ # expects mask of shape:
394
+ # [batch, key_tokens]
395
+ # adds singleton query_tokens dimension:
396
+ # [batch, 1, key_tokens]
397
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
398
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
399
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
400
+ if attention_mask is not None and attention_mask.ndim == 2:
401
+ # assume that mask is expressed as:
402
+ # (1 = keep, 0 = discard)
403
+ # convert mask into a bias that can be added to attention scores:
404
+ # (keep = +0, discard = -10000.0)
405
+ attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
406
+ attention_mask = attention_mask.unsqueeze(1)
407
+
408
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
409
+ if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
410
+ encoder_attention_mask = (
411
+ 1 - encoder_attention_mask.to(hidden_states.dtype)
412
+ ) * -10000.0
413
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
414
+
415
+ # 1. Input
416
+ hidden_states = self.patchify_proj(hidden_states)
417
+
418
+ if self.timestep_scale_multiplier:
419
+ timestep = self.timestep_scale_multiplier * timestep
420
+
421
+ freqs_cis = self.precompute_freqs_cis(indices_grid)
422
+
423
+ batch_size = hidden_states.shape[0]
424
+ timestep, embedded_timestep = self.adaln_single(
425
+ timestep.flatten(),
426
+ {"resolution": None, "aspect_ratio": None},
427
+ batch_size=batch_size,
428
+ hidden_dtype=hidden_states.dtype,
429
+ )
430
+ # Second dimension is 1 or number of tokens (if timestep_per_token)
431
+ timestep = timestep.view(batch_size, -1, timestep.shape[-1])
432
+ embedded_timestep = embedded_timestep.view(
433
+ batch_size, -1, embedded_timestep.shape[-1]
434
+ )
435
+
436
+ # 2. Blocks
437
+ if self.caption_projection is not None:
438
+ batch_size = hidden_states.shape[0]
439
+ encoder_hidden_states = self.caption_projection(encoder_hidden_states)
440
+ encoder_hidden_states = encoder_hidden_states.view(
441
+ batch_size, -1, hidden_states.shape[-1]
442
+ )
443
+
444
+ for block_idx, block in enumerate(self.transformer_blocks):
445
+ if self.training and self.gradient_checkpointing:
446
+
447
+ def create_custom_forward(module, return_dict=None):
448
+ def custom_forward(*inputs):
449
+ if return_dict is not None:
450
+ return module(*inputs, return_dict=return_dict)
451
+ else:
452
+ return module(*inputs)
453
+
454
+ return custom_forward
455
+
456
+ ckpt_kwargs: Dict[str, Any] = (
457
+ {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
458
+ )
459
+ hidden_states = torch.utils.checkpoint.checkpoint(
460
+ create_custom_forward(block),
461
+ hidden_states,
462
+ freqs_cis,
463
+ attention_mask,
464
+ encoder_hidden_states,
465
+ encoder_attention_mask,
466
+ timestep,
467
+ cross_attention_kwargs,
468
+ class_labels,
469
+ (
470
+ skip_layer_mask[block_idx]
471
+ if skip_layer_mask is not None
472
+ else None
473
+ ),
474
+ skip_layer_strategy,
475
+ **ckpt_kwargs,
476
+ )
477
+ else:
478
+ hidden_states = block(
479
+ hidden_states,
480
+ freqs_cis=freqs_cis,
481
+ attention_mask=attention_mask,
482
+ encoder_hidden_states=encoder_hidden_states,
483
+ encoder_attention_mask=encoder_attention_mask,
484
+ timestep=timestep,
485
+ cross_attention_kwargs=cross_attention_kwargs,
486
+ class_labels=class_labels,
487
+ skip_layer_mask=(
488
+ skip_layer_mask[block_idx]
489
+ if skip_layer_mask is not None
490
+ else None
491
+ ),
492
+ skip_layer_strategy=skip_layer_strategy,
493
+ )
494
+
495
+ # 3. Output
496
+ scale_shift_values = (
497
+ self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
498
+ )
499
+ shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
500
+ hidden_states = self.norm_out(hidden_states)
501
+ # Modulation
502
+ hidden_states = hidden_states * (1 + scale) + shift
503
+ hidden_states = self.proj_out(hidden_states)
504
+ if not return_dict:
505
+ return (hidden_states,)
506
+
507
+ return Transformer3DModelOutput(sample=hidden_states)
ltx_video/pipelines/__init__.py ADDED
File without changes
ltx_video/pipelines/pipeline_ltx_video.py ADDED
@@ -0,0 +1,1439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py
2
+ import inspect
3
+ import math
4
+ import re
5
+ from contextlib import nullcontext
6
+ from dataclasses import dataclass
7
+ from typing import Callable, Dict, List, Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ from diffusers.image_processor import VaeImageProcessor
12
+ from diffusers.models import AutoencoderKL
13
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
14
+ from diffusers.schedulers import DPMSolverMultistepScheduler
15
+ from diffusers.utils import deprecate, logging
16
+ from diffusers.utils.torch_utils import randn_tensor
17
+ from einops import rearrange
18
+ from transformers import (
19
+ T5EncoderModel,
20
+ T5Tokenizer,
21
+ AutoModelForCausalLM,
22
+ AutoProcessor,
23
+ AutoTokenizer,
24
+ )
25
+
26
+ from ltx_video.models.autoencoders.causal_video_autoencoder import (
27
+ CausalVideoAutoencoder,
28
+ )
29
+ from ltx_video.models.autoencoders.vae_encode import (
30
+ get_vae_size_scale_factor,
31
+ latent_to_pixel_coords,
32
+ vae_decode,
33
+ vae_encode,
34
+ )
35
+ from ltx_video.models.transformers.symmetric_patchifier import Patchifier
36
+ from ltx_video.models.transformers.transformer3d import Transformer3DModel
37
+ from ltx_video.schedulers.rf import TimestepShifter
38
+ from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
39
+ from ltx_video.utils.prompt_enhance_utils import generate_cinematic_prompt
40
+
41
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
+
43
+
44
+ ASPECT_RATIO_1024_BIN = {
45
+ "0.25": [512.0, 2048.0],
46
+ "0.28": [512.0, 1856.0],
47
+ "0.32": [576.0, 1792.0],
48
+ "0.33": [576.0, 1728.0],
49
+ "0.35": [576.0, 1664.0],
50
+ "0.4": [640.0, 1600.0],
51
+ "0.42": [640.0, 1536.0],
52
+ "0.48": [704.0, 1472.0],
53
+ "0.5": [704.0, 1408.0],
54
+ "0.52": [704.0, 1344.0],
55
+ "0.57": [768.0, 1344.0],
56
+ "0.6": [768.0, 1280.0],
57
+ "0.68": [832.0, 1216.0],
58
+ "0.72": [832.0, 1152.0],
59
+ "0.78": [896.0, 1152.0],
60
+ "0.82": [896.0, 1088.0],
61
+ "0.88": [960.0, 1088.0],
62
+ "0.94": [960.0, 1024.0],
63
+ "1.0": [1024.0, 1024.0],
64
+ "1.07": [1024.0, 960.0],
65
+ "1.13": [1088.0, 960.0],
66
+ "1.21": [1088.0, 896.0],
67
+ "1.29": [1152.0, 896.0],
68
+ "1.38": [1152.0, 832.0],
69
+ "1.46": [1216.0, 832.0],
70
+ "1.67": [1280.0, 768.0],
71
+ "1.75": [1344.0, 768.0],
72
+ "2.0": [1408.0, 704.0],
73
+ "2.09": [1472.0, 704.0],
74
+ "2.4": [1536.0, 640.0],
75
+ "2.5": [1600.0, 640.0],
76
+ "3.0": [1728.0, 576.0],
77
+ "4.0": [2048.0, 512.0],
78
+ }
79
+
80
+ ASPECT_RATIO_512_BIN = {
81
+ "0.25": [256.0, 1024.0],
82
+ "0.28": [256.0, 928.0],
83
+ "0.32": [288.0, 896.0],
84
+ "0.33": [288.0, 864.0],
85
+ "0.35": [288.0, 832.0],
86
+ "0.4": [320.0, 800.0],
87
+ "0.42": [320.0, 768.0],
88
+ "0.48": [352.0, 736.0],
89
+ "0.5": [352.0, 704.0],
90
+ "0.52": [352.0, 672.0],
91
+ "0.57": [384.0, 672.0],
92
+ "0.6": [384.0, 640.0],
93
+ "0.68": [416.0, 608.0],
94
+ "0.72": [416.0, 576.0],
95
+ "0.78": [448.0, 576.0],
96
+ "0.82": [448.0, 544.0],
97
+ "0.88": [480.0, 544.0],
98
+ "0.94": [480.0, 512.0],
99
+ "1.0": [512.0, 512.0],
100
+ "1.07": [512.0, 480.0],
101
+ "1.13": [544.0, 480.0],
102
+ "1.21": [544.0, 448.0],
103
+ "1.29": [576.0, 448.0],
104
+ "1.38": [576.0, 416.0],
105
+ "1.46": [608.0, 416.0],
106
+ "1.67": [640.0, 384.0],
107
+ "1.75": [672.0, 384.0],
108
+ "2.0": [704.0, 352.0],
109
+ "2.09": [736.0, 352.0],
110
+ "2.4": [768.0, 320.0],
111
+ "2.5": [800.0, 320.0],
112
+ "3.0": [864.0, 288.0],
113
+ "4.0": [1024.0, 256.0],
114
+ }
115
+
116
+
117
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
118
+ def retrieve_timesteps(
119
+ scheduler,
120
+ num_inference_steps: Optional[int] = None,
121
+ device: Optional[Union[str, torch.device]] = None,
122
+ timesteps: Optional[List[int]] = None,
123
+ **kwargs,
124
+ ):
125
+ """
126
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
127
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
128
+
129
+ Args:
130
+ scheduler (`SchedulerMixin`):
131
+ The scheduler to get timesteps from.
132
+ num_inference_steps (`int`):
133
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
134
+ `timesteps` must be `None`.
135
+ device (`str` or `torch.device`, *optional*):
136
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
137
+ timesteps (`List[int]`, *optional*):
138
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
139
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
140
+ must be `None`.
141
+
142
+ Returns:
143
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
144
+ second element is the number of inference steps.
145
+ """
146
+ if timesteps is not None:
147
+ accepts_timesteps = "timesteps" in set(
148
+ inspect.signature(scheduler.set_timesteps).parameters.keys()
149
+ )
150
+ if not accepts_timesteps:
151
+ raise ValueError(
152
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
153
+ f" timestep schedules. Please check whether you are using the correct scheduler."
154
+ )
155
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
156
+ timesteps = scheduler.timesteps
157
+ num_inference_steps = len(timesteps)
158
+ else:
159
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
160
+ timesteps = scheduler.timesteps
161
+ return timesteps, num_inference_steps
162
+
163
+
164
+ @dataclass
165
+ class ConditioningItem:
166
+ """
167
+ Defines a single frame-conditioning item - a single frame or a sequence of frames.
168
+ Attributes:
169
+ media_item (torch.Tensor), shape=(b, 3, f, h, w): The media item to condition on.
170
+ media_frame_number (int): The start-frame number of the media item in the generated video.
171
+ conditioning_strength (float): The strength of the conditioning (1.0 = full conditioning).
172
+ """
173
+
174
+ media_item: torch.Tensor
175
+ media_frame_number: int
176
+ conditioning_strength: float
177
+
178
+
179
+ class LTXVideoPipeline(DiffusionPipeline):
180
+ r"""
181
+ Pipeline for text-to-image generation using LTX-Video.
182
+
183
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
184
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
185
+
186
+ Args:
187
+ vae ([`AutoencoderKL`]):
188
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
189
+ text_encoder ([`T5EncoderModel`]):
190
+ Frozen text-encoder. This uses
191
+ [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
192
+ [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant.
193
+ tokenizer (`T5Tokenizer`):
194
+ Tokenizer of class
195
+ [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
196
+ transformer ([`Transformer2DModel`]):
197
+ A text conditioned `Transformer2DModel` to denoise the encoded image latents.
198
+ scheduler ([`SchedulerMixin`]):
199
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
200
+ """
201
+
202
+ bad_punct_regex = re.compile(
203
+ r"["
204
+ + "#®•©™&@·º½¾¿¡§~"
205
+ + r"\)"
206
+ + r"\("
207
+ + r"\]"
208
+ + r"\["
209
+ + r"\}"
210
+ + r"\{"
211
+ + r"\|"
212
+ + "\\"
213
+ + r"\/"
214
+ + r"\*"
215
+ + r"]{1,}"
216
+ ) # noqa
217
+
218
+ _optional_components = [
219
+ "tokenizer",
220
+ "text_encoder",
221
+ "prompt_enhancer_image_caption_model",
222
+ "prompt_enhancer_image_caption_processor",
223
+ "prompt_enhancer_llm_model",
224
+ "prompt_enhancer_llm_tokenizer",
225
+ ]
226
+ model_cpu_offload_seq = "prompt_enhancer_image_caption_model->prompt_enhancer_llm_model->text_encoder->transformer->vae"
227
+
228
+ def __init__(
229
+ self,
230
+ tokenizer: T5Tokenizer,
231
+ text_encoder: T5EncoderModel,
232
+ vae: AutoencoderKL,
233
+ transformer: Transformer3DModel,
234
+ scheduler: DPMSolverMultistepScheduler,
235
+ patchifier: Patchifier,
236
+ prompt_enhancer_image_caption_model: AutoModelForCausalLM,
237
+ prompt_enhancer_image_caption_processor: AutoProcessor,
238
+ prompt_enhancer_llm_model: AutoModelForCausalLM,
239
+ prompt_enhancer_llm_tokenizer: AutoTokenizer,
240
+ allowed_inference_steps: Optional[List[float]] = None,
241
+ ):
242
+ super().__init__()
243
+
244
+ self.register_modules(
245
+ tokenizer=tokenizer,
246
+ text_encoder=text_encoder,
247
+ vae=vae,
248
+ transformer=transformer,
249
+ scheduler=scheduler,
250
+ patchifier=patchifier,
251
+ prompt_enhancer_image_caption_model=prompt_enhancer_image_caption_model,
252
+ prompt_enhancer_image_caption_processor=prompt_enhancer_image_caption_processor,
253
+ prompt_enhancer_llm_model=prompt_enhancer_llm_model,
254
+ prompt_enhancer_llm_tokenizer=prompt_enhancer_llm_tokenizer,
255
+ )
256
+
257
+ self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor(
258
+ self.vae
259
+ )
260
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
261
+
262
+ self.allowed_inference_steps = allowed_inference_steps
263
+
264
+ def mask_text_embeddings(self, emb, mask):
265
+ if emb.shape[0] == 1:
266
+ keep_index = mask.sum().item()
267
+ return emb[:, :, :keep_index, :], keep_index
268
+ else:
269
+ masked_feature = emb * mask[:, None, :, None]
270
+ return masked_feature, emb.shape[2]
271
+
272
+ # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt
273
+ def encode_prompt(
274
+ self,
275
+ prompt: Union[str, List[str]],
276
+ do_classifier_free_guidance: bool = True,
277
+ negative_prompt: str = "",
278
+ num_images_per_prompt: int = 1,
279
+ device: Optional[torch.device] = None,
280
+ prompt_embeds: Optional[torch.FloatTensor] = None,
281
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
282
+ prompt_attention_mask: Optional[torch.FloatTensor] = None,
283
+ negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
284
+ text_encoder_max_tokens: int = 256,
285
+ **kwargs,
286
+ ):
287
+ r"""
288
+ Encodes the prompt into text encoder hidden states.
289
+
290
+ Args:
291
+ prompt (`str` or `List[str]`, *optional*):
292
+ prompt to be encoded
293
+ negative_prompt (`str` or `List[str]`, *optional*):
294
+ The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
295
+ instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
296
+ This should be "".
297
+ do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
298
+ whether to use classifier free guidance or not
299
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
300
+ number of images that should be generated per prompt
301
+ device: (`torch.device`, *optional*):
302
+ torch device to place the resulting embeddings on
303
+ prompt_embeds (`torch.FloatTensor`, *optional*):
304
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
305
+ provided, text embeddings will be generated from `prompt` input argument.
306
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
307
+ Pre-generated negative text embeddings.
308
+ """
309
+
310
+ if "mask_feature" in kwargs:
311
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
312
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
313
+
314
+ if device is None:
315
+ device = self._execution_device
316
+
317
+ if prompt is not None and isinstance(prompt, str):
318
+ batch_size = 1
319
+ elif prompt is not None and isinstance(prompt, list):
320
+ batch_size = len(prompt)
321
+ else:
322
+ batch_size = prompt_embeds.shape[0]
323
+
324
+ # See Section 3.1. of the paper.
325
+ max_length = (
326
+ text_encoder_max_tokens # TPU supports only lengths multiple of 128
327
+ )
328
+ if prompt_embeds is None:
329
+ assert (
330
+ self.text_encoder is not None
331
+ ), "You should provide either prompt_embeds or self.text_encoder should not be None,"
332
+ text_enc_device = next(self.text_encoder.parameters()).device
333
+ prompt = self._text_preprocessing(prompt)
334
+ text_inputs = self.tokenizer(
335
+ prompt,
336
+ padding="max_length",
337
+ max_length=max_length,
338
+ truncation=True,
339
+ add_special_tokens=True,
340
+ return_tensors="pt",
341
+ )
342
+ text_input_ids = text_inputs.input_ids
343
+ untruncated_ids = self.tokenizer(
344
+ prompt, padding="longest", return_tensors="pt"
345
+ ).input_ids
346
+
347
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[
348
+ -1
349
+ ] and not torch.equal(text_input_ids, untruncated_ids):
350
+ removed_text = self.tokenizer.batch_decode(
351
+ untruncated_ids[:, max_length - 1 : -1]
352
+ )
353
+ logger.warning(
354
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
355
+ f" {max_length} tokens: {removed_text}"
356
+ )
357
+
358
+ prompt_attention_mask = text_inputs.attention_mask
359
+ prompt_attention_mask = prompt_attention_mask.to(text_enc_device)
360
+ prompt_attention_mask = prompt_attention_mask.to(device)
361
+
362
+ prompt_embeds = self.text_encoder(
363
+ text_input_ids.to(text_enc_device), attention_mask=prompt_attention_mask
364
+ )
365
+ prompt_embeds = prompt_embeds[0]
366
+
367
+ if self.text_encoder is not None:
368
+ dtype = self.text_encoder.dtype
369
+ elif self.transformer is not None:
370
+ dtype = self.transformer.dtype
371
+ else:
372
+ dtype = None
373
+
374
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
375
+
376
+ bs_embed, seq_len, _ = prompt_embeds.shape
377
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
378
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
379
+ prompt_embeds = prompt_embeds.view(
380
+ bs_embed * num_images_per_prompt, seq_len, -1
381
+ )
382
+ prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt)
383
+ prompt_attention_mask = prompt_attention_mask.view(
384
+ bs_embed * num_images_per_prompt, -1
385
+ )
386
+
387
+ # get unconditional embeddings for classifier free guidance
388
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
389
+ uncond_tokens = self._text_preprocessing(negative_prompt)
390
+ uncond_tokens = uncond_tokens * batch_size
391
+ max_length = prompt_embeds.shape[1]
392
+ uncond_input = self.tokenizer(
393
+ uncond_tokens,
394
+ padding="max_length",
395
+ max_length=max_length,
396
+ truncation=True,
397
+ return_attention_mask=True,
398
+ add_special_tokens=True,
399
+ return_tensors="pt",
400
+ )
401
+ negative_prompt_attention_mask = uncond_input.attention_mask
402
+ negative_prompt_attention_mask = negative_prompt_attention_mask.to(
403
+ text_enc_device
404
+ )
405
+
406
+ negative_prompt_embeds = self.text_encoder(
407
+ uncond_input.input_ids.to(text_enc_device),
408
+ attention_mask=negative_prompt_attention_mask,
409
+ )
410
+ negative_prompt_embeds = negative_prompt_embeds[0]
411
+
412
+ if do_classifier_free_guidance:
413
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
414
+ seq_len = negative_prompt_embeds.shape[1]
415
+
416
+ negative_prompt_embeds = negative_prompt_embeds.to(
417
+ dtype=dtype, device=device
418
+ )
419
+
420
+ negative_prompt_embeds = negative_prompt_embeds.repeat(
421
+ 1, num_images_per_prompt, 1
422
+ )
423
+ negative_prompt_embeds = negative_prompt_embeds.view(
424
+ batch_size * num_images_per_prompt, seq_len, -1
425
+ )
426
+
427
+ negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
428
+ 1, num_images_per_prompt
429
+ )
430
+ negative_prompt_attention_mask = negative_prompt_attention_mask.view(
431
+ bs_embed * num_images_per_prompt, -1
432
+ )
433
+ else:
434
+ negative_prompt_embeds = None
435
+ negative_prompt_attention_mask = None
436
+
437
+ return (
438
+ prompt_embeds,
439
+ prompt_attention_mask,
440
+ negative_prompt_embeds,
441
+ negative_prompt_attention_mask,
442
+ )
443
+
444
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
445
+ def prepare_extra_step_kwargs(self, generator, eta):
446
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
447
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
448
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
449
+ # and should be between [0, 1]
450
+
451
+ accepts_eta = "eta" in set(
452
+ inspect.signature(self.scheduler.step).parameters.keys()
453
+ )
454
+ extra_step_kwargs = {}
455
+ if accepts_eta:
456
+ extra_step_kwargs["eta"] = eta
457
+
458
+ # check if the scheduler accepts generator
459
+ accepts_generator = "generator" in set(
460
+ inspect.signature(self.scheduler.step).parameters.keys()
461
+ )
462
+ if accepts_generator:
463
+ extra_step_kwargs["generator"] = generator
464
+ return extra_step_kwargs
465
+
466
+ def check_inputs(
467
+ self,
468
+ prompt,
469
+ height,
470
+ width,
471
+ negative_prompt,
472
+ prompt_embeds=None,
473
+ negative_prompt_embeds=None,
474
+ prompt_attention_mask=None,
475
+ negative_prompt_attention_mask=None,
476
+ enhance_prompt=False,
477
+ ):
478
+ if height % 8 != 0 or width % 8 != 0:
479
+ raise ValueError(
480
+ f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
481
+ )
482
+
483
+ if prompt is not None and prompt_embeds is not None:
484
+ raise ValueError(
485
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
486
+ " only forward one of the two."
487
+ )
488
+ elif prompt is None and prompt_embeds is None:
489
+ raise ValueError(
490
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
491
+ )
492
+ elif prompt is not None and (
493
+ not isinstance(prompt, str) and not isinstance(prompt, list)
494
+ ):
495
+ raise ValueError(
496
+ f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
497
+ )
498
+
499
+ if prompt is not None and negative_prompt_embeds is not None:
500
+ raise ValueError(
501
+ f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
502
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
503
+ )
504
+
505
+ if negative_prompt is not None and negative_prompt_embeds is not None:
506
+ raise ValueError(
507
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
508
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
509
+ )
510
+
511
+ if prompt_embeds is not None and prompt_attention_mask is None:
512
+ raise ValueError(
513
+ "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
514
+ )
515
+
516
+ if (
517
+ negative_prompt_embeds is not None
518
+ and negative_prompt_attention_mask is None
519
+ ):
520
+ raise ValueError(
521
+ "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
522
+ )
523
+
524
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
525
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
526
+ raise ValueError(
527
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
528
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
529
+ f" {negative_prompt_embeds.shape}."
530
+ )
531
+ if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
532
+ raise ValueError(
533
+ "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
534
+ f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
535
+ f" {negative_prompt_attention_mask.shape}."
536
+ )
537
+
538
+ if enhance_prompt:
539
+ assert (
540
+ self.prompt_enhancer_image_caption_model is not None
541
+ ), "Image caption model must be initialized if enhance_prompt is True"
542
+ assert (
543
+ self.prompt_enhancer_image_caption_processor is not None
544
+ ), "Image caption processor must be initialized if enhance_prompt is True"
545
+ assert (
546
+ self.prompt_enhancer_llm_model is not None
547
+ ), "Text prompt enhancer model must be initialized if enhance_prompt is True"
548
+ assert (
549
+ self.prompt_enhancer_llm_tokenizer is not None
550
+ ), "Text prompt enhancer tokenizer must be initialized if enhance_prompt is True"
551
+
552
+ def _text_preprocessing(self, text):
553
+ if not isinstance(text, (tuple, list)):
554
+ text = [text]
555
+
556
+ def process(text: str):
557
+ text = text.strip()
558
+ return text
559
+
560
+ return [process(t) for t in text]
561
+
562
+ @staticmethod
563
+ def add_noise_to_image_conditioning_latents(
564
+ t: float,
565
+ init_latents: torch.Tensor,
566
+ latents: torch.Tensor,
567
+ noise_scale: float,
568
+ conditioning_mask: torch.Tensor,
569
+ generator,
570
+ eps=1e-6,
571
+ ):
572
+ """
573
+ Add timestep-dependent noise to the hard-conditioning latents.
574
+ This helps with motion continuity, especially when conditioned on a single frame.
575
+ """
576
+ noise = randn_tensor(
577
+ latents.shape,
578
+ generator=generator,
579
+ device=latents.device,
580
+ dtype=latents.dtype,
581
+ )
582
+ # Add noise only to hard-conditioning latents (conditioning_mask = 1.0)
583
+ need_to_noise = (conditioning_mask > 1.0 - eps).unsqueeze(-1)
584
+ noised_latents = init_latents + noise_scale * noise * (t**2)
585
+ latents = torch.where(need_to_noise, noised_latents, latents)
586
+ return latents
587
+
588
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
589
+ def prepare_latents(
590
+ self,
591
+ latent_shape,
592
+ dtype,
593
+ device,
594
+ generator,
595
+ ):
596
+ if isinstance(generator, list) and len(generator) != latent_shape[0]:
597
+ raise ValueError(
598
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
599
+ f" size of {latent_shape[0]}. Make sure the batch size matches the length of the generators."
600
+ )
601
+
602
+ # For backward compatibility, generate in the "patchified" shape and rearrange
603
+ b, c, f, h, w = latent_shape
604
+ latents = randn_tensor(
605
+ (b, f * h * w, c), generator=generator, device=device, dtype=dtype
606
+ )
607
+ latents = rearrange(latents, "b (f h w) c -> b c f h w", f=f, h=h, w=w)
608
+
609
+ # scale the initial noise by the standard deviation required by the scheduler
610
+ latents = latents * self.scheduler.init_noise_sigma
611
+ return latents
612
+
613
+ @staticmethod
614
+ def classify_height_width_bin(
615
+ height: int, width: int, ratios: dict
616
+ ) -> Tuple[int, int]:
617
+ """Returns binned height and width."""
618
+ ar = float(height / width)
619
+ closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
620
+ default_hw = ratios[closest_ratio]
621
+ return int(default_hw[0]), int(default_hw[1])
622
+
623
+ @staticmethod
624
+ def resize_and_crop_tensor(
625
+ samples: torch.Tensor, new_width: int, new_height: int
626
+ ) -> torch.Tensor:
627
+ n_frames, orig_height, orig_width = samples.shape[-3:]
628
+
629
+ # Check if resizing is needed
630
+ if orig_height != new_height or orig_width != new_width:
631
+ ratio = max(new_height / orig_height, new_width / orig_width)
632
+ resized_width = int(orig_width * ratio)
633
+ resized_height = int(orig_height * ratio)
634
+
635
+ # Resize
636
+ samples = rearrange(samples, "b c n h w -> (b n) c h w")
637
+ samples = F.interpolate(
638
+ samples,
639
+ size=(resized_height, resized_width),
640
+ mode="bilinear",
641
+ align_corners=False,
642
+ )
643
+ samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames)
644
+
645
+ # Center Crop
646
+ start_x = (resized_width - new_width) // 2
647
+ end_x = start_x + new_width
648
+ start_y = (resized_height - new_height) // 2
649
+ end_y = start_y + new_height
650
+ samples = samples[..., start_y:end_y, start_x:end_x]
651
+
652
+ return samples
653
+
654
+ @torch.no_grad()
655
+ def __call__(
656
+ self,
657
+ height: int,
658
+ width: int,
659
+ num_frames: int,
660
+ frame_rate: float,
661
+ prompt: Union[str, List[str]] = None,
662
+ negative_prompt: str = "",
663
+ num_inference_steps: int = 20,
664
+ timesteps: List[int] = None,
665
+ guidance_scale: float = 4.5,
666
+ skip_layer_strategy: Optional[SkipLayerStrategy] = None,
667
+ skip_block_list: Optional[List[int]] = None,
668
+ stg_scale: float = 1.0,
669
+ do_rescaling: bool = True,
670
+ rescaling_scale: float = 0.7,
671
+ num_images_per_prompt: Optional[int] = 1,
672
+ eta: float = 0.0,
673
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
674
+ latents: Optional[torch.FloatTensor] = None,
675
+ prompt_embeds: Optional[torch.FloatTensor] = None,
676
+ prompt_attention_mask: Optional[torch.FloatTensor] = None,
677
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
678
+ negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
679
+ output_type: Optional[str] = "pil",
680
+ return_dict: bool = True,
681
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
682
+ conditioning_items: Optional[List[ConditioningItem]] = None,
683
+ decode_timestep: Union[List[float], float] = 0.0,
684
+ decode_noise_scale: Optional[List[float]] = None,
685
+ mixed_precision: bool = False,
686
+ offload_to_cpu: bool = False,
687
+ enhance_prompt: bool = False,
688
+ text_encoder_max_tokens: int = 256,
689
+ stochastic_sampling: bool = False,
690
+ **kwargs,
691
+ ) -> Union[ImagePipelineOutput, Tuple]:
692
+ """
693
+ Function invoked when calling the pipeline for generation.
694
+
695
+ Args:
696
+ prompt (`str` or `List[str]`, *optional*):
697
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
698
+ instead.
699
+ negative_prompt (`str` or `List[str]`, *optional*):
700
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
701
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
702
+ less than `1`).
703
+ num_inference_steps (`int`, *optional*, defaults to 100):
704
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
705
+ expense of slower inference.
706
+ timesteps (`List[int]`, *optional*):
707
+ Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
708
+ timesteps are used. Must be in descending order.
709
+ guidance_scale (`float`, *optional*, defaults to 4.5):
710
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
711
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
712
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
713
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
714
+ usually at the expense of lower image quality.
715
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
716
+ The number of images to generate per prompt.
717
+ height (`int`, *optional*, defaults to self.unet.config.sample_size):
718
+ The height in pixels of the generated image.
719
+ width (`int`, *optional*, defaults to self.unet.config.sample_size):
720
+ The width in pixels of the generated image.
721
+ eta (`float`, *optional*, defaults to 0.0):
722
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
723
+ [`schedulers.DDIMScheduler`], will be ignored for others.
724
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
725
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
726
+ to make generation deterministic.
727
+ latents (`torch.FloatTensor`, *optional*):
728
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
729
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
730
+ tensor will ge generated by sampling using the supplied random `generator`.
731
+ prompt_embeds (`torch.FloatTensor`, *optional*):
732
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
733
+ provided, text embeddings will be generated from `prompt` input argument.
734
+ prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
735
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
736
+ Pre-generated negative text embeddings. This negative prompt should be "". If not
737
+ provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
738
+ negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
739
+ Pre-generated attention mask for negative text embeddings.
740
+ output_type (`str`, *optional*, defaults to `"pil"`):
741
+ The output format of the generate image. Choose between
742
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
743
+ return_dict (`bool`, *optional*, defaults to `True`):
744
+ Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
745
+ callback_on_step_end (`Callable`, *optional*):
746
+ A function that calls at the end of each denoising steps during the inference. The function is called
747
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
748
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
749
+ `callback_on_step_end_tensor_inputs`.
750
+ use_resolution_binning (`bool` defaults to `True`):
751
+ If set to `True`, the requested height and width are first mapped to the closest resolutions using
752
+ `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
753
+ the requested resolution. Useful for generating non-square images.
754
+ enhance_prompt (`bool`, *optional*, defaults to `False`):
755
+ If set to `True`, the prompt is enhanced using a LLM model.
756
+ text_encoder_max_tokens (`int`, *optional*, defaults to `256`):
757
+ The maximum number of tokens to use for the text encoder.
758
+ stochastic_sampling (`bool`, *optional*, defaults to `False`):
759
+ If set to `True`, the sampling is stochastic. If set to `False`, the sampling is deterministic.
760
+
761
+ Examples:
762
+
763
+ Returns:
764
+ [`~pipelines.ImagePipelineOutput`] or `tuple`:
765
+ If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
766
+ returned where the first element is a list with the generated images
767
+ """
768
+ if "mask_feature" in kwargs:
769
+ deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
770
+ deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
771
+
772
+ is_video = kwargs.get("is_video", False)
773
+ self.check_inputs(
774
+ prompt,
775
+ height,
776
+ width,
777
+ negative_prompt,
778
+ prompt_embeds,
779
+ negative_prompt_embeds,
780
+ prompt_attention_mask,
781
+ negative_prompt_attention_mask,
782
+ )
783
+
784
+ if kwargs.get("media_items", None) is not None:
785
+ # Backwards compatibility mode for first-frame conditioning
786
+ assert (
787
+ conditioning_items is None
788
+ ), "Cannot pass both `conditioning_items` and `media_items`."
789
+ conditioning_items = [ConditioningItem(kwargs["media_items"], 0, 1.0)]
790
+
791
+ # 2. Default height and width to transformer
792
+ if prompt is not None and isinstance(prompt, str):
793
+ batch_size = 1
794
+ elif prompt is not None and isinstance(prompt, list):
795
+ batch_size = len(prompt)
796
+ else:
797
+ batch_size = prompt_embeds.shape[0]
798
+
799
+ device = self._execution_device
800
+
801
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
802
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
803
+ # corresponds to doing no classifier free guidance.
804
+ do_classifier_free_guidance = guidance_scale > 1.0
805
+ do_spatio_temporal_guidance = stg_scale > 0.0
806
+
807
+ num_conds = 1
808
+ if do_classifier_free_guidance:
809
+ num_conds += 1
810
+ if do_spatio_temporal_guidance:
811
+ num_conds += 1
812
+
813
+ skip_layer_mask = None
814
+ if do_spatio_temporal_guidance:
815
+ skip_layer_mask = self.transformer.create_skip_layer_mask(
816
+ batch_size, num_conds, 2, skip_block_list
817
+ )
818
+
819
+ if enhance_prompt:
820
+ self.prompt_enhancer_image_caption_model = (
821
+ self.prompt_enhancer_image_caption_model.to(self._execution_device)
822
+ )
823
+ self.prompt_enhancer_llm_model = self.prompt_enhancer_llm_model.to(
824
+ self._execution_device
825
+ )
826
+
827
+ prompt = generate_cinematic_prompt(
828
+ self.prompt_enhancer_image_caption_model,
829
+ self.prompt_enhancer_image_caption_processor,
830
+ self.prompt_enhancer_llm_model,
831
+ self.prompt_enhancer_llm_tokenizer,
832
+ prompt,
833
+ conditioning_items,
834
+ max_new_tokens=text_encoder_max_tokens,
835
+ )
836
+
837
+ # 3. Encode input prompt
838
+ if self.text_encoder is not None:
839
+ self.text_encoder = self.text_encoder.to(self._execution_device)
840
+
841
+ (
842
+ prompt_embeds,
843
+ prompt_attention_mask,
844
+ negative_prompt_embeds,
845
+ negative_prompt_attention_mask,
846
+ ) = self.encode_prompt(
847
+ prompt,
848
+ do_classifier_free_guidance,
849
+ negative_prompt=negative_prompt,
850
+ num_images_per_prompt=num_images_per_prompt,
851
+ device=device,
852
+ prompt_embeds=prompt_embeds,
853
+ negative_prompt_embeds=negative_prompt_embeds,
854
+ prompt_attention_mask=prompt_attention_mask,
855
+ negative_prompt_attention_mask=negative_prompt_attention_mask,
856
+ text_encoder_max_tokens=text_encoder_max_tokens,
857
+ )
858
+
859
+ if offload_to_cpu and self.text_encoder is not None:
860
+ self.text_encoder = self.text_encoder.cpu()
861
+
862
+ self.transformer = self.transformer.to(self._execution_device)
863
+
864
+ prompt_embeds_batch = prompt_embeds
865
+ prompt_attention_mask_batch = prompt_attention_mask
866
+ if do_classifier_free_guidance:
867
+ prompt_embeds_batch = torch.cat(
868
+ [negative_prompt_embeds, prompt_embeds], dim=0
869
+ )
870
+ prompt_attention_mask_batch = torch.cat(
871
+ [negative_prompt_attention_mask, prompt_attention_mask], dim=0
872
+ )
873
+ if do_spatio_temporal_guidance:
874
+ prompt_embeds_batch = torch.cat([prompt_embeds_batch, prompt_embeds], dim=0)
875
+ prompt_attention_mask_batch = torch.cat(
876
+ [
877
+ prompt_attention_mask_batch,
878
+ prompt_attention_mask,
879
+ ],
880
+ dim=0,
881
+ )
882
+
883
+ # 3b. Encode and prepare conditioning data
884
+ self.video_scale_factor = self.video_scale_factor if is_video else 1
885
+ vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False)
886
+ image_cond_noise_scale = kwargs.get("image_cond_noise_scale", 0.0)
887
+
888
+ # 4. Prepare latents.
889
+ latent_height = height // self.vae_scale_factor
890
+ latent_width = width // self.vae_scale_factor
891
+ latent_num_frames = num_frames // self.video_scale_factor
892
+ if isinstance(self.vae, CausalVideoAutoencoder) and is_video:
893
+ latent_num_frames += 1
894
+ latent_shape = (
895
+ batch_size * num_images_per_prompt,
896
+ self.transformer.config.in_channels,
897
+ latent_num_frames,
898
+ latent_height,
899
+ latent_width,
900
+ )
901
+
902
+ # Prepare the initial random latents tensor, shape = (b, c, f, h, w)
903
+ latents = self.prepare_latents(
904
+ latent_shape=latent_shape,
905
+ dtype=prompt_embeds_batch.dtype,
906
+ device=device,
907
+ generator=generator,
908
+ )
909
+
910
+ # Update the latents with the conditioning items and patchify them into (b, n, c)
911
+ latents, pixel_coords, conditioning_mask, num_cond_latents = (
912
+ self.prepare_conditioning(
913
+ conditioning_items=conditioning_items,
914
+ init_latents=latents,
915
+ num_frames=num_frames,
916
+ height=height,
917
+ width=width,
918
+ vae_per_channel_normalize=vae_per_channel_normalize,
919
+ generator=generator,
920
+ )
921
+ )
922
+ init_latents = latents.clone() # Used for image_cond_noise_update
923
+
924
+ pixel_coords = torch.cat([pixel_coords] * num_conds)
925
+ orig_conditioning_mask = conditioning_mask
926
+ if conditioning_mask is not None and is_video:
927
+ assert num_images_per_prompt == 1
928
+ conditioning_mask = torch.cat([conditioning_mask] * num_conds)
929
+ fractional_coords = pixel_coords.to(torch.float32)
930
+ fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
931
+
932
+ # 5. Prepare timesteps
933
+ retrieve_timesteps_kwargs = {}
934
+ if isinstance(self.scheduler, TimestepShifter):
935
+ retrieve_timesteps_kwargs["samples"] = latents
936
+ timesteps, num_inference_steps = retrieve_timesteps(
937
+ self.scheduler,
938
+ num_inference_steps,
939
+ device,
940
+ timesteps,
941
+ **retrieve_timesteps_kwargs,
942
+ )
943
+ if self.allowed_inference_steps is not None:
944
+ for timestep in [round(x, 4) for x in timesteps.tolist()]:
945
+ assert (
946
+ timestep in self.allowed_inference_steps
947
+ ), f"Invalid inference timestep {timestep}. Allowed timesteps are {self.allowed_inference_steps}."
948
+
949
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
950
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
951
+
952
+ # 7. Denoising loop
953
+ num_warmup_steps = max(
954
+ len(timesteps) - num_inference_steps * self.scheduler.order, 0
955
+ )
956
+
957
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
958
+ for i, t in enumerate(timesteps):
959
+ if conditioning_mask is not None and image_cond_noise_scale > 0.0:
960
+ latents = self.add_noise_to_image_conditioning_latents(
961
+ t,
962
+ init_latents,
963
+ latents,
964
+ image_cond_noise_scale,
965
+ orig_conditioning_mask,
966
+ generator,
967
+ )
968
+
969
+ latent_model_input = (
970
+ torch.cat([latents] * num_conds) if num_conds > 1 else latents
971
+ )
972
+ latent_model_input = self.scheduler.scale_model_input(
973
+ latent_model_input, t
974
+ )
975
+
976
+ current_timestep = t
977
+ if not torch.is_tensor(current_timestep):
978
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
979
+ # This would be a good case for the `match` statement (Python 3.10+)
980
+ is_mps = latent_model_input.device.type == "mps"
981
+ if isinstance(current_timestep, float):
982
+ dtype = torch.float32 if is_mps else torch.float64
983
+ else:
984
+ dtype = torch.int32 if is_mps else torch.int64
985
+ current_timestep = torch.tensor(
986
+ [current_timestep],
987
+ dtype=dtype,
988
+ device=latent_model_input.device,
989
+ )
990
+ elif len(current_timestep.shape) == 0:
991
+ current_timestep = current_timestep[None].to(
992
+ latent_model_input.device
993
+ )
994
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
995
+ current_timestep = current_timestep.expand(
996
+ latent_model_input.shape[0]
997
+ ).unsqueeze(-1)
998
+
999
+ if conditioning_mask is not None:
1000
+ # Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1001
+ # and will start to be denoised when the current timestep is lower than their conditioning timestep.
1002
+ current_timestep = torch.min(
1003
+ current_timestep, 1.0 - conditioning_mask
1004
+ )
1005
+
1006
+ # Choose the appropriate context manager based on `mixed_precision`
1007
+ if mixed_precision:
1008
+ if "xla" in device.type:
1009
+ raise NotImplementedError(
1010
+ "Mixed precision is not supported yet on XLA devices."
1011
+ )
1012
+
1013
+ context_manager = torch.autocast(device.type, dtype=torch.bfloat16)
1014
+ else:
1015
+ context_manager = nullcontext() # Dummy context manager
1016
+
1017
+ # predict noise model_output
1018
+ with context_manager:
1019
+ noise_pred = self.transformer(
1020
+ latent_model_input.to(self.transformer.dtype),
1021
+ indices_grid=fractional_coords,
1022
+ encoder_hidden_states=prompt_embeds_batch.to(
1023
+ self.transformer.dtype
1024
+ ),
1025
+ encoder_attention_mask=prompt_attention_mask_batch,
1026
+ timestep=current_timestep,
1027
+ skip_layer_mask=skip_layer_mask,
1028
+ skip_layer_strategy=skip_layer_strategy,
1029
+ return_dict=False,
1030
+ )[0]
1031
+
1032
+ # perform guidance
1033
+ if do_spatio_temporal_guidance:
1034
+ noise_pred_text, noise_pred_text_perturb = noise_pred.chunk(
1035
+ num_conds
1036
+ )[-2:]
1037
+ if do_classifier_free_guidance:
1038
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(num_conds)[:2]
1039
+ noise_pred = noise_pred_uncond + guidance_scale * (
1040
+ noise_pred_text - noise_pred_uncond
1041
+ )
1042
+ elif do_spatio_temporal_guidance:
1043
+ noise_pred = noise_pred_text
1044
+ if do_spatio_temporal_guidance:
1045
+ noise_pred = noise_pred + stg_scale * (
1046
+ noise_pred_text - noise_pred_text_perturb
1047
+ )
1048
+ if do_rescaling:
1049
+ noise_pred_text_std = noise_pred_text.view(batch_size, -1).std(
1050
+ dim=1, keepdim=True
1051
+ )
1052
+ noise_pred_std = noise_pred.view(batch_size, -1).std(
1053
+ dim=1, keepdim=True
1054
+ )
1055
+
1056
+ factor = noise_pred_text_std / noise_pred_std
1057
+ factor = rescaling_scale * factor + (1 - rescaling_scale)
1058
+
1059
+ noise_pred = noise_pred * factor.view(batch_size, 1, 1)
1060
+
1061
+ current_timestep = current_timestep[:1]
1062
+ # learned sigma
1063
+ if (
1064
+ self.transformer.config.out_channels // 2
1065
+ == self.transformer.config.in_channels
1066
+ ):
1067
+ noise_pred = noise_pred.chunk(2, dim=1)[0]
1068
+
1069
+ # compute previous image: x_t -> x_t-1
1070
+ latents = self.denoising_step(
1071
+ latents,
1072
+ noise_pred,
1073
+ current_timestep,
1074
+ orig_conditioning_mask,
1075
+ t,
1076
+ extra_step_kwargs,
1077
+ stochastic_sampling=stochastic_sampling,
1078
+ )
1079
+
1080
+ # call the callback, if provided
1081
+ if i == len(timesteps) - 1 or (
1082
+ (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
1083
+ ):
1084
+ progress_bar.update()
1085
+
1086
+ if callback_on_step_end is not None:
1087
+ callback_on_step_end(self, i, t, {})
1088
+
1089
+ if offload_to_cpu:
1090
+ self.transformer = self.transformer.cpu()
1091
+ if self._execution_device == "cuda":
1092
+ torch.cuda.empty_cache()
1093
+
1094
+ # Remove the added conditioning latents
1095
+ latents = latents[:, num_cond_latents:]
1096
+
1097
+ latents = self.patchifier.unpatchify(
1098
+ latents=latents,
1099
+ output_height=latent_height,
1100
+ output_width=latent_width,
1101
+ out_channels=self.transformer.in_channels
1102
+ // math.prod(self.patchifier.patch_size),
1103
+ )
1104
+ if output_type != "latent":
1105
+ if self.vae.decoder.timestep_conditioning:
1106
+ noise = torch.randn_like(latents)
1107
+ if not isinstance(decode_timestep, list):
1108
+ decode_timestep = [decode_timestep] * latents.shape[0]
1109
+ if decode_noise_scale is None:
1110
+ decode_noise_scale = decode_timestep
1111
+ elif not isinstance(decode_noise_scale, list):
1112
+ decode_noise_scale = [decode_noise_scale] * latents.shape[0]
1113
+
1114
+ decode_timestep = torch.tensor(decode_timestep).to(latents.device)
1115
+ decode_noise_scale = torch.tensor(decode_noise_scale).to(
1116
+ latents.device
1117
+ )[:, None, None, None, None]
1118
+ latents = (
1119
+ latents * (1 - decode_noise_scale) + noise * decode_noise_scale
1120
+ )
1121
+ else:
1122
+ decode_timestep = None
1123
+ image = vae_decode(
1124
+ latents,
1125
+ self.vae,
1126
+ is_video,
1127
+ vae_per_channel_normalize=kwargs["vae_per_channel_normalize"],
1128
+ timestep=decode_timestep,
1129
+ )
1130
+ image = self.image_processor.postprocess(image, output_type=output_type)
1131
+
1132
+ else:
1133
+ image = latents
1134
+
1135
+ # Offload all models
1136
+ self.maybe_free_model_hooks()
1137
+
1138
+ if not return_dict:
1139
+ return (image,)
1140
+
1141
+ return ImagePipelineOutput(images=image)
1142
+
1143
+ def denoising_step(
1144
+ self,
1145
+ latents: torch.Tensor,
1146
+ noise_pred: torch.Tensor,
1147
+ current_timestep: torch.Tensor,
1148
+ conditioning_mask: torch.Tensor,
1149
+ t: float,
1150
+ extra_step_kwargs,
1151
+ t_eps=1e-6,
1152
+ stochastic_sampling=False,
1153
+ ):
1154
+ """
1155
+ Perform the denoising step for the required tokens, based on the current timestep and
1156
+ conditioning mask:
1157
+ Conditioning latents have an initial timestep and noising level of (1.0 - conditioning_mask)
1158
+ and will start to be denoised when the current timestep is equal or lower than their
1159
+ conditioning timestep.
1160
+ (hard-conditioning latents with conditioning_mask = 1.0 are never denoised)
1161
+ """
1162
+ # Denoise the latents using the scheduler
1163
+ denoised_latents = self.scheduler.step(
1164
+ noise_pred,
1165
+ t if current_timestep is None else current_timestep,
1166
+ latents,
1167
+ **extra_step_kwargs,
1168
+ return_dict=False,
1169
+ stochastic_sampling=stochastic_sampling,
1170
+ )[0]
1171
+
1172
+ if conditioning_mask is None:
1173
+ return denoised_latents
1174
+
1175
+ tokens_to_denoise_mask = (t - t_eps < (1.0 - conditioning_mask)).unsqueeze(-1)
1176
+ return torch.where(tokens_to_denoise_mask, denoised_latents, latents)
1177
+
1178
+ def prepare_conditioning(
1179
+ self,
1180
+ conditioning_items: Optional[List[ConditioningItem]],
1181
+ init_latents: torch.Tensor,
1182
+ num_frames: int,
1183
+ height: int,
1184
+ width: int,
1185
+ vae_per_channel_normalize: bool = False,
1186
+ generator=None,
1187
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1188
+ """
1189
+ Prepare conditioning tokens based on the provided conditioning items.
1190
+
1191
+ This method encodes provided conditioning items (video frames or single frames) into latents
1192
+ and integrates them with the initial latent tensor. It also calculates corresponding pixel
1193
+ coordinates, a mask indicating the influence of conditioning latents, and the total number of
1194
+ conditioning latents.
1195
+
1196
+ Args:
1197
+ conditioning_items (Optional[List[ConditioningItem]]): A list of ConditioningItem objects.
1198
+ init_latents (torch.Tensor): The initial latent tensor of shape (b, c, f_l, h_l, w_l), where
1199
+ `f_l` is the number of latent frames, and `h_l` and `w_l` are latent spatial dimensions.
1200
+ num_frames, height, width: The dimensions of the generated video.
1201
+ vae_per_channel_normalize (bool, optional): Whether to normalize channels during VAE encoding.
1202
+ Defaults to `False`.
1203
+ generator: The random generator
1204
+
1205
+ Returns:
1206
+ Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]:
1207
+ - `init_latents` (torch.Tensor): The updated latent tensor including conditioning latents,
1208
+ patchified into (b, n, c) shape.
1209
+ - `init_pixel_coords` (torch.Tensor): The pixel coordinates corresponding to the updated
1210
+ latent tensor.
1211
+ - `conditioning_mask` (torch.Tensor): A mask indicating the conditioning-strength of each
1212
+ latent token.
1213
+ - `num_cond_latents` (int): The total number of latent tokens added from conditioning items.
1214
+
1215
+ Raises:
1216
+ AssertionError: If input shapes, dimensions, or conditions for applying conditioning are invalid.
1217
+ """
1218
+ assert isinstance(self.vae, CausalVideoAutoencoder)
1219
+
1220
+ if conditioning_items:
1221
+ batch_size, _, num_latent_frames = init_latents.shape[:3]
1222
+ # Initialize the conditioning mask
1223
+ conditioning_latent_frames_mask = torch.zeros(
1224
+ (batch_size, num_latent_frames),
1225
+ dtype=torch.float32,
1226
+ device=init_latents.device,
1227
+ )
1228
+
1229
+ extra_conditioning_latents = []
1230
+ extra_conditioning_pixel_coords = []
1231
+ extra_conditioning_mask = []
1232
+ extra_conditioning_num_latents = 0 # Number of extra conditioning latents added (should be removed before decoding)
1233
+
1234
+ # Process each conditioning item
1235
+ for conditioning_item in conditioning_items:
1236
+ media_item = conditioning_item.media_item
1237
+ media_frame_number = conditioning_item.media_frame_number
1238
+ strength = conditioning_item.conditioning_strength
1239
+ assert media_item.ndim == 5 # (b, c, f, h, w)
1240
+ b, c, n_frames, h, w = media_item.shape
1241
+ assert height == h and width == w
1242
+ assert n_frames % 8 == 1
1243
+ assert (
1244
+ media_frame_number >= 0
1245
+ and media_frame_number + n_frames <= num_frames
1246
+ )
1247
+
1248
+ # Encode the provided conditioning media item
1249
+ latents = vae_encode(
1250
+ media_item.to(dtype=self.vae.dtype, device=self.vae.device),
1251
+ self.vae,
1252
+ vae_per_channel_normalize=vae_per_channel_normalize,
1253
+ ).to(dtype=init_latents.dtype)
1254
+
1255
+ # Handle the different conditioning cases
1256
+ if media_frame_number == 0:
1257
+ # First frame or sequence - just update the initial noise latents and the mask
1258
+ f_l = latents.shape[2]
1259
+ init_latents[:, :, :f_l] = torch.lerp(
1260
+ init_latents[:, :, :f_l], latents, strength
1261
+ )
1262
+ conditioning_latent_frames_mask[:, :f_l] = strength
1263
+ else:
1264
+ # Non-first frame or sequence
1265
+ if n_frames > 1:
1266
+ # Handle non-first sequence.
1267
+ # Encoded latents are either fully consumed, or the prefix is handled separately below.
1268
+ init_latents, conditioning_latent_frames_mask, latents = (
1269
+ self._handle_non_first_conditioning_sequence(
1270
+ init_latents,
1271
+ conditioning_latent_frames_mask,
1272
+ latents,
1273
+ media_frame_number,
1274
+ strength,
1275
+ )
1276
+ )
1277
+
1278
+ if latents is not None: # Single frame or sequence-prefix latents
1279
+ noise = randn_tensor(
1280
+ latents.shape,
1281
+ generator=generator,
1282
+ device=latents.device,
1283
+ dtype=latents.dtype,
1284
+ )
1285
+
1286
+ latents = torch.lerp(noise, latents, strength)
1287
+
1288
+ # Patchify the extra conditioning latents and calculate their pixel coordinates
1289
+ latents, latent_coords = self.patchifier.patchify(
1290
+ latents=latents
1291
+ )
1292
+ pixel_coords = latent_to_pixel_coords(
1293
+ latent_coords,
1294
+ self.vae,
1295
+ causal_fix=self.transformer.config.causal_temporal_positioning,
1296
+ )
1297
+
1298
+ # Update the frame numbers to match the target frame number
1299
+ pixel_coords[:, 0] += media_frame_number
1300
+ extra_conditioning_num_latents += latents.shape[1]
1301
+
1302
+ conditioning_mask = torch.full(
1303
+ latents.shape[:2],
1304
+ strength,
1305
+ dtype=torch.float32,
1306
+ device=conditioning_latent_frames_mask.device,
1307
+ )
1308
+
1309
+ extra_conditioning_latents.append(latents)
1310
+ extra_conditioning_pixel_coords.append(pixel_coords)
1311
+ extra_conditioning_mask.append(conditioning_mask)
1312
+
1313
+ # Patchify the updated latents and calculate their pixel coordinates
1314
+ init_latents, init_latent_coords = self.patchifier.patchify(
1315
+ latents=init_latents
1316
+ )
1317
+ init_pixel_coords = latent_to_pixel_coords(
1318
+ init_latent_coords,
1319
+ self.vae,
1320
+ causal_fix=self.transformer.config.causal_temporal_positioning,
1321
+ )
1322
+
1323
+ if not conditioning_items:
1324
+ return init_latents, init_pixel_coords, None, 0
1325
+
1326
+ # Create a per-token mask based on the updated conditioning_latent_frames_mask
1327
+ init_conditioning_mask = conditioning_latent_frames_mask.gather(
1328
+ 1, init_latent_coords[:, 0]
1329
+ )
1330
+
1331
+ if extra_conditioning_latents:
1332
+ # Stack the extra conditioning latents, pixel coordinates and mask
1333
+ init_latents = torch.cat([*extra_conditioning_latents, init_latents], dim=1)
1334
+ init_pixel_coords = torch.cat(
1335
+ [*extra_conditioning_pixel_coords, init_pixel_coords], dim=2
1336
+ )
1337
+ init_conditioning_mask = torch.cat(
1338
+ [*extra_conditioning_mask, init_conditioning_mask], dim=1
1339
+ )
1340
+
1341
+ return (
1342
+ init_latents,
1343
+ init_pixel_coords,
1344
+ init_conditioning_mask,
1345
+ extra_conditioning_num_latents,
1346
+ )
1347
+
1348
+ @staticmethod
1349
+ def _handle_non_first_conditioning_sequence(
1350
+ init_latents: torch.Tensor,
1351
+ conditioning_latent_frames_mask: torch.Tensor,
1352
+ latents: torch.Tensor,
1353
+ media_frame_number: int,
1354
+ strength: float,
1355
+ num_prefix_latent_frames: int = 2,
1356
+ prefix_latents_mode: str = "concat",
1357
+ prefix_soft_conditioning_strength: float = 0.15,
1358
+ ):
1359
+ """
1360
+ Special handling for a conditioning sequence that does not start on the first frame.
1361
+ The special handling is required to allow a short encoded video to be used as middle
1362
+ (or last) sequence in a longer video.
1363
+ Args:
1364
+ init_latents (torch.Tensor): The initial noise latents to be updated.
1365
+ conditioning_latent_frames_mask (torch.Tensor): A mask indicating the conditioning-strength of each
1366
+ latent token.
1367
+ latents (torch.Tensor): The encoded conditioning item.
1368
+ media_frame_number (int): The target frame number of the first frame in the conditioning sequence.
1369
+ strength (float): The conditioning strength for the conditioning latents.
1370
+ num_prefix_latent_frames (int, optional): The length of the sequence prefix, to be handled
1371
+ separately. Defaults to 2.
1372
+ prefix_latents_mode (str, optional): Special treatment for prefix (boundary) latents.
1373
+ - "drop": Drop the prefix latents.
1374
+ - "soft": Use the prefix latents, but with soft-conditioning
1375
+ - "concat": Add the prefix latents as extra tokens (like single frames)
1376
+ prefix_soft_conditioning_strength (float, optional): The strength of the soft-conditioning for
1377
+ the prefix latents, relevant if `prefix_latents_mode` is "soft". Defaults to 0.1.
1378
+
1379
+ """
1380
+ f_l = latents.shape[2]
1381
+ f_l_p = num_prefix_latent_frames
1382
+ assert f_l >= f_l_p
1383
+ assert media_frame_number % 8 == 0
1384
+ if f_l > f_l_p:
1385
+ # Insert the conditioning latents **excluding the prefix** into the sequence
1386
+ f_l_start = media_frame_number // 8 + f_l_p
1387
+ f_l_end = f_l_start + f_l - f_l_p
1388
+ init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1389
+ init_latents[:, :, f_l_start:f_l_end],
1390
+ latents[:, :, f_l_p:],
1391
+ strength,
1392
+ )
1393
+ # Mark these latent frames as conditioning latents
1394
+ conditioning_latent_frames_mask[:, f_l_start:f_l_end] = strength
1395
+
1396
+ # Handle the prefix-latents
1397
+ if prefix_latents_mode == "soft":
1398
+ if f_l_p > 1:
1399
+ # Drop the first (single-frame) latent and soft-condition the remaining prefix
1400
+ f_l_start = media_frame_number // 8 + 1
1401
+ f_l_end = f_l_start + f_l_p - 1
1402
+ strength = min(prefix_soft_conditioning_strength, strength)
1403
+ init_latents[:, :, f_l_start:f_l_end] = torch.lerp(
1404
+ init_latents[:, :, f_l_start:f_l_end],
1405
+ latents[:, :, 1:f_l_p],
1406
+ strength,
1407
+ )
1408
+ # Mark these latent frames as conditioning latents
1409
+ conditioning_latent_frames_mask[:, f_l_start:f_l_end] = strength
1410
+ latents = None # No more latents to handle
1411
+ elif prefix_latents_mode == "drop":
1412
+ # Drop the prefix latents
1413
+ latents = None
1414
+ elif prefix_latents_mode == "concat":
1415
+ # Pass-on the prefix latents to be handled as extra conditioning frames
1416
+ latents = latents[:, :, :f_l_p]
1417
+ else:
1418
+ raise ValueError(f"Invalid prefix_latents_mode: {prefix_latents_mode}")
1419
+ return init_latents, conditioning_latent_frames_mask, latents
1420
+
1421
+ def trim_conditioning_sequence(
1422
+ self, start_frame: int, sequence_num_frames: int, target_num_frames: int
1423
+ ):
1424
+ """
1425
+ Trim a conditioning sequence to the allowed number of frames.
1426
+
1427
+ Args:
1428
+ start_frame (int): The target frame number of the first frame in the sequence.
1429
+ sequence_num_frames (int): The number of frames in the sequence.
1430
+ target_num_frames (int): The target number of frames in the generated video.
1431
+
1432
+ Returns:
1433
+ int: updated sequence length
1434
+ """
1435
+ scale_factor = self.video_scale_factor
1436
+ num_frames = min(sequence_num_frames, target_num_frames - start_frame)
1437
+ # Trim down to a multiple of temporal_scale_factor frames plus 1
1438
+ num_frames = (num_frames - 1) // scale_factor * scale_factor + 1
1439
+ return num_frames
ltx_video/schedulers/__init__.py ADDED
File without changes
ltx_video/schedulers/rf.py ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from abc import ABC, abstractmethod
3
+ from dataclasses import dataclass
4
+ from typing import Callable, Optional, Tuple, Union
5
+ import json
6
+ import os
7
+ from pathlib import Path
8
+
9
+ import torch
10
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
11
+ from diffusers.schedulers.scheduling_utils import SchedulerMixin
12
+ from diffusers.utils import BaseOutput
13
+ from torch import Tensor
14
+ from safetensors import safe_open
15
+
16
+
17
+ from ltx_video.utils.torch_utils import append_dims
18
+
19
+ from ltx_video.utils.diffusers_config_mapping import (
20
+ diffusers_and_ours_config_mapping,
21
+ make_hashable_key,
22
+ )
23
+
24
+
25
+ def linear_quadratic_schedule(num_steps, threshold_noise=0.025, linear_steps=None):
26
+ if linear_steps is None:
27
+ linear_steps = num_steps // 2
28
+ if num_steps < 2:
29
+ return torch.tensor([1.0])
30
+ linear_sigma_schedule = [
31
+ i * threshold_noise / linear_steps for i in range(linear_steps)
32
+ ]
33
+ threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
34
+ quadratic_steps = num_steps - linear_steps
35
+ quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
36
+ linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (
37
+ quadratic_steps**2
38
+ )
39
+ const = quadratic_coef * (linear_steps**2)
40
+ quadratic_sigma_schedule = [
41
+ quadratic_coef * (i**2) + linear_coef * i + const
42
+ for i in range(linear_steps, num_steps)
43
+ ]
44
+ sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule + [1.0]
45
+ sigma_schedule = [1.0 - x for x in sigma_schedule]
46
+ return torch.tensor(sigma_schedule[:-1])
47
+
48
+
49
+ def simple_diffusion_resolution_dependent_timestep_shift(
50
+ samples: Tensor,
51
+ timesteps: Tensor,
52
+ n: int = 32 * 32,
53
+ ) -> Tensor:
54
+ if len(samples.shape) == 3:
55
+ _, m, _ = samples.shape
56
+ elif len(samples.shape) in [4, 5]:
57
+ m = math.prod(samples.shape[2:])
58
+ else:
59
+ raise ValueError(
60
+ "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
61
+ )
62
+ snr = (timesteps / (1 - timesteps)) ** 2
63
+ shift_snr = torch.log(snr) + 2 * math.log(m / n)
64
+ shifted_timesteps = torch.sigmoid(0.5 * shift_snr)
65
+
66
+ return shifted_timesteps
67
+
68
+
69
+ def time_shift(mu: float, sigma: float, t: Tensor):
70
+ return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
71
+
72
+
73
+ def get_normal_shift(
74
+ n_tokens: int,
75
+ min_tokens: int = 1024,
76
+ max_tokens: int = 4096,
77
+ min_shift: float = 0.95,
78
+ max_shift: float = 2.05,
79
+ ) -> Callable[[float], float]:
80
+ m = (max_shift - min_shift) / (max_tokens - min_tokens)
81
+ b = min_shift - m * min_tokens
82
+ return m * n_tokens + b
83
+
84
+
85
+ def strech_shifts_to_terminal(shifts: Tensor, terminal=0.1):
86
+ """
87
+ Stretch a function (given as sampled shifts) so that its final value matches the given terminal value
88
+ using the provided formula.
89
+
90
+ Parameters:
91
+ - shifts (Tensor): The samples of the function to be stretched (PyTorch Tensor).
92
+ - terminal (float): The desired terminal value (value at the last sample).
93
+
94
+ Returns:
95
+ - Tensor: The stretched shifts such that the final value equals `terminal`.
96
+ """
97
+ if shifts.numel() == 0:
98
+ raise ValueError("The 'shifts' tensor must not be empty.")
99
+
100
+ # Ensure terminal value is valid
101
+ if terminal <= 0 or terminal >= 1:
102
+ raise ValueError("The terminal value must be between 0 and 1 (exclusive).")
103
+
104
+ # Transform the shifts using the given formula
105
+ one_minus_z = 1 - shifts
106
+ scale_factor = one_minus_z[-1] / (1 - terminal)
107
+ stretched_shifts = 1 - (one_minus_z / scale_factor)
108
+
109
+ return stretched_shifts
110
+
111
+
112
+ def sd3_resolution_dependent_timestep_shift(
113
+ samples: Tensor, timesteps: Tensor, target_shift_terminal: Optional[float] = None
114
+ ) -> Tensor:
115
+ """
116
+ Shifts the timestep schedule as a function of the generated resolution.
117
+
118
+ In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
119
+ For more details: https://arxiv.org/pdf/2403.03206
120
+
121
+ In Flux they later propose a more dynamic resolution dependent timestep shift, see:
122
+ https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66
123
+
124
+
125
+ Args:
126
+ samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
127
+ (batch_size, channels, frame, height, width).
128
+ timesteps (Tensor): A batch of timesteps with shape (batch_size,).
129
+ target_shift_terminal (float): The target terminal value for the shifted timesteps.
130
+
131
+ Returns:
132
+ Tensor: The shifted timesteps.
133
+ """
134
+ if len(samples.shape) == 3:
135
+ _, m, _ = samples.shape
136
+ elif len(samples.shape) in [4, 5]:
137
+ m = math.prod(samples.shape[2:])
138
+ else:
139
+ raise ValueError(
140
+ "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
141
+ )
142
+
143
+ shift = get_normal_shift(m)
144
+ time_shifts = time_shift(shift, 1, timesteps)
145
+ if target_shift_terminal is not None: # Stretch the shifts to the target terminal
146
+ time_shifts = strech_shifts_to_terminal(time_shifts, target_shift_terminal)
147
+ return time_shifts
148
+
149
+
150
+ class TimestepShifter(ABC):
151
+ @abstractmethod
152
+ def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
153
+ pass
154
+
155
+
156
+ @dataclass
157
+ class RectifiedFlowSchedulerOutput(BaseOutput):
158
+ """
159
+ Output class for the scheduler's step function output.
160
+
161
+ Args:
162
+ prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
163
+ Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
164
+ denoising loop.
165
+ pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
166
+ The predicted denoised sample (x_{0}) based on the model output from the current timestep.
167
+ `pred_original_sample` can be used to preview progress or for guidance.
168
+ """
169
+
170
+ prev_sample: torch.FloatTensor
171
+ pred_original_sample: Optional[torch.FloatTensor] = None
172
+
173
+
174
+ class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
175
+ order = 1
176
+
177
+ @register_to_config
178
+ def __init__(
179
+ self,
180
+ num_train_timesteps=1000,
181
+ shifting: Optional[str] = None,
182
+ base_resolution: int = 32**2,
183
+ target_shift_terminal: Optional[float] = None,
184
+ sampler: Optional[str] = "Uniform",
185
+ shift: Optional[float] = None,
186
+ ):
187
+ super().__init__()
188
+ self.init_noise_sigma = 1.0
189
+ self.num_inference_steps = None
190
+ self.sampler = sampler
191
+ self.shifting = shifting
192
+ self.base_resolution = base_resolution
193
+ self.target_shift_terminal = target_shift_terminal
194
+ self.timesteps = self.sigmas = self.get_initial_timesteps(
195
+ num_train_timesteps, shift=shift
196
+ )
197
+ self.shift = shift
198
+
199
+ def get_initial_timesteps(
200
+ self, num_timesteps: int, shift: Optional[float] = None
201
+ ) -> Tensor:
202
+ if self.sampler == "Uniform":
203
+ return torch.linspace(1, 1 / num_timesteps, num_timesteps)
204
+ elif self.sampler == "LinearQuadratic":
205
+ return linear_quadratic_schedule(num_timesteps)
206
+ elif self.sampler == "Constant":
207
+ assert (
208
+ shift is not None
209
+ ), "Shift must be provided for constant time shift sampler."
210
+ return time_shift(
211
+ shift, 1, torch.linspace(1, 1 / num_timesteps, num_timesteps)
212
+ )
213
+
214
+ def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
215
+ if self.shifting == "SD3":
216
+ return sd3_resolution_dependent_timestep_shift(
217
+ samples, timesteps, self.target_shift_terminal
218
+ )
219
+ elif self.shifting == "SimpleDiffusion":
220
+ return simple_diffusion_resolution_dependent_timestep_shift(
221
+ samples, timesteps, self.base_resolution
222
+ )
223
+ return timesteps
224
+
225
+ def set_timesteps(
226
+ self,
227
+ num_inference_steps: int,
228
+ samples: Tensor,
229
+ device: Union[str, torch.device] = None,
230
+ ):
231
+ """
232
+ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
233
+
234
+ Args:
235
+ num_inference_steps (`int`): The number of diffusion steps used when generating samples.
236
+ samples (`Tensor`): A batch of samples with shape.
237
+ device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
238
+ """
239
+ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
240
+ self.timesteps = self.get_initial_timesteps(
241
+ num_inference_steps, shift=self.shift
242
+ ).to(device)
243
+ self.timesteps = self.shift_timesteps(samples, self.timesteps)
244
+ self.num_inference_steps = num_inference_steps
245
+ self.sigmas = self.timesteps
246
+
247
+ @staticmethod
248
+ def from_pretrained(pretrained_model_path: Union[str, os.PathLike]):
249
+ pretrained_model_path = Path(pretrained_model_path)
250
+ if pretrained_model_path.is_file():
251
+ comfy_single_file_state_dict = {}
252
+ with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
253
+ metadata = f.metadata()
254
+ for k in f.keys():
255
+ comfy_single_file_state_dict[k] = f.get_tensor(k)
256
+ configs = json.loads(metadata["config"])
257
+ config = configs["scheduler"]
258
+ del comfy_single_file_state_dict
259
+
260
+ elif pretrained_model_path.is_dir():
261
+ diffusers_noise_scheduler_config_path = (
262
+ pretrained_model_path / "scheduler" / "scheduler_config.json"
263
+ )
264
+
265
+ with open(diffusers_noise_scheduler_config_path, "r") as f:
266
+ scheduler_config = json.load(f)
267
+ hashable_config = make_hashable_key(scheduler_config)
268
+ if hashable_config in diffusers_and_ours_config_mapping:
269
+ config = diffusers_and_ours_config_mapping[hashable_config]
270
+ return RectifiedFlowScheduler.from_config(config)
271
+
272
+ def scale_model_input(
273
+ self, sample: torch.FloatTensor, timestep: Optional[int] = None
274
+ ) -> torch.FloatTensor:
275
+ # pylint: disable=unused-argument
276
+ """
277
+ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
278
+ current timestep.
279
+
280
+ Args:
281
+ sample (`torch.FloatTensor`): input sample
282
+ timestep (`int`, optional): current timestep
283
+
284
+ Returns:
285
+ `torch.FloatTensor`: scaled input sample
286
+ """
287
+ return sample
288
+
289
+ def step(
290
+ self,
291
+ model_output: torch.FloatTensor,
292
+ timestep: torch.FloatTensor,
293
+ sample: torch.FloatTensor,
294
+ return_dict: bool = True,
295
+ stochastic_sampling: Optional[bool] = False,
296
+ **kwargs,
297
+ ) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
298
+ """
299
+ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
300
+ process from the learned model outputs (most often the predicted noise).
301
+ z_{t_1} = z_t - \Delta_t * v
302
+ The method finds the next timestep that is lower than the input timestep(s) and denoises the latents
303
+ to that level. The input timestep(s) are not required to be one of the predefined timesteps.
304
+
305
+ Args:
306
+ model_output (`torch.FloatTensor`):
307
+ The direct output from learned diffusion model - the velocity,
308
+ timestep (`float`):
309
+ The current discrete timestep in the diffusion chain (global or per-token).
310
+ sample (`torch.FloatTensor`):
311
+ A current latent tokens to be de-noised.
312
+ return_dict (`bool`, *optional*, defaults to `True`):
313
+ Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
314
+ stochastic_sampling (`bool`, *optional*, defaults to `False`):
315
+ Whether to use stochastic sampling for the sampling process.
316
+
317
+ Returns:
318
+ [`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
319
+ If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
320
+ otherwise a tuple is returned where the first element is the sample tensor.
321
+ """
322
+ if self.num_inference_steps is None:
323
+ raise ValueError(
324
+ "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
325
+ )
326
+ t_eps = 1e-6 # Small epsilon to avoid numerical issues in timestep values
327
+
328
+ timesteps_padded = torch.cat(
329
+ [self.timesteps, torch.zeros(1, device=self.timesteps.device)]
330
+ )
331
+
332
+ # Find the next lower timestep(s) and compute the dt from the current timestep(s)
333
+ if timestep.ndim == 0:
334
+ # Global timestep case
335
+ lower_mask = timesteps_padded < timestep - t_eps
336
+ lower_timestep = timesteps_padded[lower_mask][0] # Closest lower timestep
337
+ dt = timestep - lower_timestep
338
+
339
+ else:
340
+ # Per-token case
341
+ assert timestep.ndim == 2
342
+ lower_mask = timesteps_padded[:, None, None] < timestep[None] - t_eps
343
+ lower_timestep = lower_mask * timesteps_padded[:, None, None]
344
+ lower_timestep, _ = lower_timestep.max(dim=0)
345
+ dt = (timestep - lower_timestep)[..., None]
346
+
347
+ # Compute previous sample
348
+ if stochastic_sampling:
349
+ x0 = sample - timestep[..., None] * model_output
350
+ next_timestep = timestep[..., None] - dt
351
+ prev_sample = self.add_noise(x0, torch.randn_like(sample), next_timestep)
352
+ else:
353
+ prev_sample = sample - dt * model_output
354
+
355
+ if not return_dict:
356
+ return (prev_sample,)
357
+
358
+ return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)
359
+
360
+ def add_noise(
361
+ self,
362
+ original_samples: torch.FloatTensor,
363
+ noise: torch.FloatTensor,
364
+ timesteps: torch.FloatTensor,
365
+ ) -> torch.FloatTensor:
366
+ sigmas = timesteps
367
+ sigmas = append_dims(sigmas, original_samples.ndim)
368
+ alphas = 1 - sigmas
369
+ noisy_samples = alphas * original_samples + sigmas * noise
370
+ return noisy_samples
ltx_video/utils/__init__.py ADDED
File without changes
ltx_video/utils/diffusers_config_mapping.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def make_hashable_key(dict_key):
2
+ def convert_value(value):
3
+ if isinstance(value, list):
4
+ return tuple(value)
5
+ elif isinstance(value, dict):
6
+ return tuple(sorted((k, convert_value(v)) for k, v in value.items()))
7
+ else:
8
+ return value
9
+
10
+ return tuple(sorted((k, convert_value(v)) for k, v in dict_key.items()))
11
+
12
+
13
+ DIFFUSERS_SCHEDULER_CONFIG = {
14
+ "_class_name": "FlowMatchEulerDiscreteScheduler",
15
+ "_diffusers_version": "0.32.0.dev0",
16
+ "base_image_seq_len": 1024,
17
+ "base_shift": 0.95,
18
+ "invert_sigmas": False,
19
+ "max_image_seq_len": 4096,
20
+ "max_shift": 2.05,
21
+ "num_train_timesteps": 1000,
22
+ "shift": 1.0,
23
+ "shift_terminal": 0.1,
24
+ "use_beta_sigmas": False,
25
+ "use_dynamic_shifting": True,
26
+ "use_exponential_sigmas": False,
27
+ "use_karras_sigmas": False,
28
+ }
29
+ DIFFUSERS_TRANSFORMER_CONFIG = {
30
+ "_class_name": "LTXVideoTransformer3DModel",
31
+ "_diffusers_version": "0.32.0.dev0",
32
+ "activation_fn": "gelu-approximate",
33
+ "attention_bias": True,
34
+ "attention_head_dim": 64,
35
+ "attention_out_bias": True,
36
+ "caption_channels": 4096,
37
+ "cross_attention_dim": 2048,
38
+ "in_channels": 128,
39
+ "norm_elementwise_affine": False,
40
+ "norm_eps": 1e-06,
41
+ "num_attention_heads": 32,
42
+ "num_layers": 28,
43
+ "out_channels": 128,
44
+ "patch_size": 1,
45
+ "patch_size_t": 1,
46
+ "qk_norm": "rms_norm_across_heads",
47
+ }
48
+ DIFFUSERS_VAE_CONFIG = {
49
+ "_class_name": "AutoencoderKLLTXVideo",
50
+ "_diffusers_version": "0.32.0.dev0",
51
+ "block_out_channels": [128, 256, 512, 512],
52
+ "decoder_causal": False,
53
+ "encoder_causal": True,
54
+ "in_channels": 3,
55
+ "latent_channels": 128,
56
+ "layers_per_block": [4, 3, 3, 3, 4],
57
+ "out_channels": 3,
58
+ "patch_size": 4,
59
+ "patch_size_t": 1,
60
+ "resnet_norm_eps": 1e-06,
61
+ "scaling_factor": 1.0,
62
+ "spatio_temporal_scaling": [True, True, True, False],
63
+ }
64
+
65
+ OURS_SCHEDULER_CONFIG = {
66
+ "_class_name": "RectifiedFlowScheduler",
67
+ "_diffusers_version": "0.25.1",
68
+ "num_train_timesteps": 1000,
69
+ "shifting": "SD3",
70
+ "base_resolution": None,
71
+ "target_shift_terminal": 0.1,
72
+ }
73
+
74
+ OURS_TRANSFORMER_CONFIG = {
75
+ "_class_name": "Transformer3DModel",
76
+ "_diffusers_version": "0.25.1",
77
+ "_name_or_path": "PixArt-alpha/PixArt-XL-2-256x256",
78
+ "activation_fn": "gelu-approximate",
79
+ "attention_bias": True,
80
+ "attention_head_dim": 64,
81
+ "attention_type": "default",
82
+ "caption_channels": 4096,
83
+ "cross_attention_dim": 2048,
84
+ "double_self_attention": False,
85
+ "dropout": 0.0,
86
+ "in_channels": 128,
87
+ "norm_elementwise_affine": False,
88
+ "norm_eps": 1e-06,
89
+ "norm_num_groups": 32,
90
+ "num_attention_heads": 32,
91
+ "num_embeds_ada_norm": 1000,
92
+ "num_layers": 28,
93
+ "num_vector_embeds": None,
94
+ "only_cross_attention": False,
95
+ "out_channels": 128,
96
+ "project_to_2d_pos": True,
97
+ "upcast_attention": False,
98
+ "use_linear_projection": False,
99
+ "qk_norm": "rms_norm",
100
+ "standardization_norm": "rms_norm",
101
+ "positional_embedding_type": "rope",
102
+ "positional_embedding_theta": 10000.0,
103
+ "positional_embedding_max_pos": [20, 2048, 2048],
104
+ "timestep_scale_multiplier": 1000,
105
+ }
106
+ OURS_VAE_CONFIG = {
107
+ "_class_name": "CausalVideoAutoencoder",
108
+ "dims": 3,
109
+ "in_channels": 3,
110
+ "out_channels": 3,
111
+ "latent_channels": 128,
112
+ "blocks": [
113
+ ["res_x", 4],
114
+ ["compress_all", 1],
115
+ ["res_x_y", 1],
116
+ ["res_x", 3],
117
+ ["compress_all", 1],
118
+ ["res_x_y", 1],
119
+ ["res_x", 3],
120
+ ["compress_all", 1],
121
+ ["res_x", 3],
122
+ ["res_x", 4],
123
+ ],
124
+ "scaling_factor": 1.0,
125
+ "norm_layer": "pixel_norm",
126
+ "patch_size": 4,
127
+ "latent_log_var": "uniform",
128
+ "use_quant_conv": False,
129
+ "causal_decoder": False,
130
+ }
131
+
132
+
133
+ diffusers_and_ours_config_mapping = {
134
+ make_hashable_key(DIFFUSERS_SCHEDULER_CONFIG): OURS_SCHEDULER_CONFIG,
135
+ make_hashable_key(DIFFUSERS_TRANSFORMER_CONFIG): OURS_TRANSFORMER_CONFIG,
136
+ make_hashable_key(DIFFUSERS_VAE_CONFIG): OURS_VAE_CONFIG,
137
+ }
138
+
139
+
140
+ TRANSFORMER_KEYS_RENAME_DICT = {
141
+ "proj_in": "patchify_proj",
142
+ "time_embed": "adaln_single",
143
+ "norm_q": "q_norm",
144
+ "norm_k": "k_norm",
145
+ }
146
+
147
+
148
+ VAE_KEYS_RENAME_DICT = {
149
+ "decoder.up_blocks.3.conv_in": "decoder.up_blocks.7",
150
+ "decoder.up_blocks.3.upsamplers.0": "decoder.up_blocks.8",
151
+ "decoder.up_blocks.3": "decoder.up_blocks.9",
152
+ "decoder.up_blocks.2.upsamplers.0": "decoder.up_blocks.5",
153
+ "decoder.up_blocks.2.conv_in": "decoder.up_blocks.4",
154
+ "decoder.up_blocks.2": "decoder.up_blocks.6",
155
+ "decoder.up_blocks.1.upsamplers.0": "decoder.up_blocks.2",
156
+ "decoder.up_blocks.1": "decoder.up_blocks.3",
157
+ "decoder.up_blocks.0": "decoder.up_blocks.1",
158
+ "decoder.mid_block": "decoder.up_blocks.0",
159
+ "encoder.down_blocks.3": "encoder.down_blocks.8",
160
+ "encoder.down_blocks.2.downsamplers.0": "encoder.down_blocks.7",
161
+ "encoder.down_blocks.2": "encoder.down_blocks.6",
162
+ "encoder.down_blocks.1.downsamplers.0": "encoder.down_blocks.4",
163
+ "encoder.down_blocks.1.conv_out": "encoder.down_blocks.5",
164
+ "encoder.down_blocks.1": "encoder.down_blocks.3",
165
+ "encoder.down_blocks.0.conv_out": "encoder.down_blocks.2",
166
+ "encoder.down_blocks.0.downsamplers.0": "encoder.down_blocks.1",
167
+ "encoder.down_blocks.0": "encoder.down_blocks.0",
168
+ "encoder.mid_block": "encoder.down_blocks.9",
169
+ "conv_shortcut.conv": "conv_shortcut",
170
+ "resnets": "res_blocks",
171
+ "norm3": "norm3.norm",
172
+ "latents_mean": "per_channel_statistics.mean-of-means",
173
+ "latents_std": "per_channel_statistics.std-of-means",
174
+ }
ltx_video/utils/prompt_enhance_utils.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Union, List, Optional
3
+
4
+ import torch
5
+ from PIL import Image
6
+
7
+ logger = logging.getLogger(__name__) # pylint: disable=invalid-name
8
+
9
+ T2V_CINEMATIC_PROMPT = """You are an expert cinematic director with many award winning movies, When writing prompts based on the user input, focus on detailed, chronological descriptions of actions and scenes.
10
+ Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph.
11
+ Start directly with the action, and keep descriptions literal and precise.
12
+ Think like a cinematographer describing a shot list.
13
+ Do not change the user input intent, just enhance it.
14
+ Keep within 150 words.
15
+ For best results, build your prompts using this structure:
16
+ Start with main action in a single sentence
17
+ Add specific details about movements and gestures
18
+ Describe character/object appearances precisely
19
+ Include background and environment details
20
+ Specify camera angles and movements
21
+ Describe lighting and colors
22
+ Note any changes or sudden events
23
+ Do not exceed the 150 word limit!
24
+ Output the enhanced prompt only.
25
+ """
26
+
27
+ I2V_CINEMATIC_PROMPT = """You are an expert cinematic director with many award winning movies, When writing prompts based on the user input, focus on detailed, chronological descriptions of actions and scenes.
28
+ Include specific movements, appearances, camera angles, and environmental details - all in a single flowing paragraph.
29
+ Start directly with the action, and keep descriptions literal and precise.
30
+ Think like a cinematographer describing a shot list.
31
+ Keep within 150 words.
32
+ For best results, build your prompts using this structure:
33
+ Describe the image first and then add the user input. Image description should be in first priority! Align to the image caption if it contradicts the user text input.
34
+ Start with main action in a single sentence
35
+ Add specific details about movements and gestures
36
+ Describe character/object appearances precisely
37
+ Include background and environment details
38
+ Specify camera angles and movements
39
+ Describe lighting and colors
40
+ Note any changes or sudden events
41
+ Align to the image caption if it contradicts the user text input.
42
+ Do not exceed the 150 word limit!
43
+ Output the enhanced prompt only.
44
+ """
45
+
46
+
47
+ def tensor_to_pil(tensor):
48
+ # Ensure tensor is in range [-1, 1]
49
+ assert tensor.min() >= -1 and tensor.max() <= 1
50
+
51
+ # Convert from [-1, 1] to [0, 1]
52
+ tensor = (tensor + 1) / 2
53
+
54
+ # Rearrange from [C, H, W] to [H, W, C]
55
+ tensor = tensor.permute(1, 2, 0)
56
+
57
+ # Convert to numpy array and then to uint8 range [0, 255]
58
+ numpy_image = (tensor.cpu().numpy() * 255).astype("uint8")
59
+
60
+ # Convert to PIL Image
61
+ return Image.fromarray(numpy_image)
62
+
63
+
64
+ def generate_cinematic_prompt(
65
+ image_caption_model,
66
+ image_caption_processor,
67
+ prompt_enhancer_model,
68
+ prompt_enhancer_tokenizer,
69
+ prompt: Union[str, List[str]],
70
+ conditioning_items: Optional[List] = None,
71
+ max_new_tokens: int = 256,
72
+ ) -> List[str]:
73
+ prompts = [prompt] if isinstance(prompt, str) else prompt
74
+
75
+ if conditioning_items is None:
76
+ prompts = _generate_t2v_prompt(
77
+ prompt_enhancer_model,
78
+ prompt_enhancer_tokenizer,
79
+ prompts,
80
+ max_new_tokens,
81
+ T2V_CINEMATIC_PROMPT,
82
+ )
83
+ else:
84
+ if len(conditioning_items) > 1 or conditioning_items[0].media_frame_number != 0:
85
+ logger.warning(
86
+ "prompt enhancement does only support unconditional or first frame of conditioning items, returning original prompts"
87
+ )
88
+ return prompts
89
+
90
+ first_frame_conditioning_item = conditioning_items[0]
91
+ first_frames = _get_first_frames_from_conditioning_item(
92
+ first_frame_conditioning_item
93
+ )
94
+
95
+ assert len(first_frames) == len(
96
+ prompts
97
+ ), "Number of conditioning frames must match number of prompts"
98
+
99
+ prompts = _generate_i2v_prompt(
100
+ image_caption_model,
101
+ image_caption_processor,
102
+ prompt_enhancer_model,
103
+ prompt_enhancer_tokenizer,
104
+ prompts,
105
+ first_frames,
106
+ max_new_tokens,
107
+ I2V_CINEMATIC_PROMPT,
108
+ )
109
+
110
+ return prompts
111
+
112
+
113
+ def _get_first_frames_from_conditioning_item(conditioning_item) -> List[Image.Image]:
114
+ frames_tensor = conditioning_item.media_item
115
+ return [
116
+ tensor_to_pil(frames_tensor[i, :, 0, :, :])
117
+ for i in range(frames_tensor.shape[0])
118
+ ]
119
+
120
+
121
+ def _generate_t2v_prompt(
122
+ prompt_enhancer_model,
123
+ prompt_enhancer_tokenizer,
124
+ prompts: List[str],
125
+ max_new_tokens: int,
126
+ system_prompt: str,
127
+ ) -> List[str]:
128
+ messages = [
129
+ [
130
+ {"role": "system", "content": system_prompt},
131
+ {"role": "user", "content": f"user_prompt: {p}"},
132
+ ]
133
+ for p in prompts
134
+ ]
135
+
136
+ texts = [
137
+ prompt_enhancer_tokenizer.apply_chat_template(
138
+ m, tokenize=False, add_generation_prompt=True
139
+ )
140
+ for m in messages
141
+ ]
142
+ model_inputs = prompt_enhancer_tokenizer(texts, return_tensors="pt").to(
143
+ prompt_enhancer_model.device
144
+ )
145
+
146
+ return _generate_and_decode_prompts(
147
+ prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens
148
+ )
149
+
150
+
151
+ def _generate_i2v_prompt(
152
+ image_caption_model,
153
+ image_caption_processor,
154
+ prompt_enhancer_model,
155
+ prompt_enhancer_tokenizer,
156
+ prompts: List[str],
157
+ first_frames: List[Image.Image],
158
+ max_new_tokens: int,
159
+ system_prompt: str,
160
+ ) -> List[str]:
161
+ image_captions = _generate_image_captions(
162
+ image_caption_model, image_caption_processor, first_frames
163
+ )
164
+
165
+ messages = [
166
+ [
167
+ {"role": "system", "content": system_prompt},
168
+ {"role": "user", "content": f"user_prompt: {p}\nimage_caption: {c}"},
169
+ ]
170
+ for p, c in zip(prompts, image_captions)
171
+ ]
172
+
173
+ texts = [
174
+ prompt_enhancer_tokenizer.apply_chat_template(
175
+ m, tokenize=False, add_generation_prompt=True
176
+ )
177
+ for m in messages
178
+ ]
179
+ model_inputs = prompt_enhancer_tokenizer(texts, return_tensors="pt").to(
180
+ prompt_enhancer_model.device
181
+ )
182
+
183
+ return _generate_and_decode_prompts(
184
+ prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens
185
+ )
186
+
187
+
188
+ def _generate_image_captions(
189
+ image_caption_model,
190
+ image_caption_processor,
191
+ images: List[Image.Image],
192
+ system_prompt: str = "<DETAILED_CAPTION>",
193
+ ) -> List[str]:
194
+ image_caption_prompts = [system_prompt] * len(images)
195
+ inputs = image_caption_processor(
196
+ image_caption_prompts, images, return_tensors="pt"
197
+ ).to(image_caption_model.device)
198
+
199
+ with torch.inference_mode():
200
+ generated_ids = image_caption_model.generate(
201
+ input_ids=inputs["input_ids"],
202
+ pixel_values=inputs["pixel_values"],
203
+ max_new_tokens=1024,
204
+ do_sample=False,
205
+ num_beams=3,
206
+ )
207
+
208
+ return image_caption_processor.batch_decode(generated_ids, skip_special_tokens=True)
209
+
210
+
211
+ def _generate_and_decode_prompts(
212
+ prompt_enhancer_model, prompt_enhancer_tokenizer, model_inputs, max_new_tokens: int
213
+ ) -> List[str]:
214
+ with torch.inference_mode():
215
+ outputs = prompt_enhancer_model.generate(
216
+ **model_inputs, max_new_tokens=max_new_tokens
217
+ )
218
+ generated_ids = [
219
+ output_ids[len(input_ids) :]
220
+ for input_ids, output_ids in zip(model_inputs.input_ids, outputs)
221
+ ]
222
+ decoded_prompts = prompt_enhancer_tokenizer.batch_decode(
223
+ generated_ids, skip_special_tokens=True
224
+ )
225
+
226
+ return decoded_prompts
ltx_video/utils/skip_layer_strategy.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from enum import Enum, auto
2
+
3
+
4
+ class SkipLayerStrategy(Enum):
5
+ AttentionSkip = auto()
6
+ AttentionValues = auto()
7
+ Residual = auto()
8
+ TransformerBlock = auto()
ltx_video/utils/torch_utils.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
6
+ """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
7
+ dims_to_append = target_dims - x.ndim
8
+ if dims_to_append < 0:
9
+ raise ValueError(
10
+ f"input has {x.ndim} dims but target_dims is {target_dims}, which is less"
11
+ )
12
+ elif dims_to_append == 0:
13
+ return x
14
+ return x[(...,) + (None,) * dims_to_append]
15
+
16
+
17
+ class Identity(nn.Module):
18
+ """A placeholder identity operator that is argument-insensitive."""
19
+
20
+ def __init__(self, *args, **kwargs) -> None: # pylint: disable=unused-argument
21
+ super().__init__()
22
+
23
+ # pylint: disable=unused-argument
24
+ def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
25
+ return x