File size: 26,714 Bytes
2d2c4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70cf89f
584e1ae
2d2c4c3
 
 
70cf89f
 
 
 
 
 
 
 
 
 
 
2d2c4c3
70cf89f
 
2d2c4c3
 
 
 
 
 
 
70cf89f
2d2c4c3
70cf89f
2d2c4c3
70cf89f
2d2c4c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
from dataclasses import dataclass
from pathlib import Path
import logging
import base64
import random
import gc
import os
import numpy as np
import torch
from typing import Dict, Any, Optional, List, Union, Tuple
import json
from safetensors import safe_open

from ltx_video.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler, TimestepShifter
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from transformers import T5EncoderModel, T5Tokenizer, AutoModelForCausalLM, AutoProcessor, AutoTokenizer

from varnish import Varnish
from varnish.utils import is_truthy, process_input_image

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Get token from environment
hf_token = os.getenv("HF_API_TOKEN")

# Constraints
MAX_LARGE_SIDE = 1280
MAX_SMALL_SIDE = 768  # should be 720 but it must be divisible by 32
MAX_FRAMES = (8 * 21) + 1  # visual glitches appear after about 169 frames, so we cap it

# Check environment variable for pipeline support
support_image_prompt = is_truthy(os.getenv("SUPPORT_INPUT_IMAGE_PROMPT"))

@dataclass
class GenerationConfig:
    """Configuration for video generation"""

    # general content settings
    prompt: str = ""
    negative_prompt: str = "saturated, highlight, overexposed, highlighted, overlit, shaking, too bright, worst quality, inconsistent motion, blurry, jittery, distorted, cropped, watermarked, watermark, logo, subtitle, subtitles, lowres"

    # video model settings (will be used during generation of the initial raw video clip)
    width: int = 768
    height: int = 416

    # this is a hack to fool LTX-Video into believing our input image is an actual video frame with poor encoding quality
    # after a quick benchmark using the value 70 seems like a sweet spot
    input_image_quality: int = 70

    # users may tend to always set this to the max, to get as much useable content as possible (which is MAX_FRAMES ie. 257).
    # The value must be a multiple of 8, plus 1 frame.
    # visual glitches appear after about 169 frames, so we don't need more actually
    num_frames: int = (8 * 14) + 1

    # values between 3.0 and 4.0 are nice
    guidance_scale: float = 3.5
    
    num_inference_steps: int = 50

    # reproducible generation settings
    seed: int = -1  # -1 means random seed

    # varnish settings (will be used for post-processing after the raw video clip has been generated
    fps: int = 30  # FPS of the final video (only applied at the very end, when converting to mp4)
    double_num_frames: bool = False  # if True, the number of frames will be multiplied by 2 using RIFE
    super_resolution: bool = False  # if True, the resolution will be multiplied by 2 using Real_ESRGAN
    
    grain_amount: float = 0.0  # be careful, adding film grain can negatively impact video compression

    # audio settings
    enable_audio: bool = False  # Whether to generate audio
    audio_prompt: str = ""  # Text prompt for audio generation
    audio_negative_prompt: str = "voices, voice, talking, speaking, speech"  # Negative prompt for audio generation

    # The range of the CRF scale is 0–51, where:
    # 0 is lossless (for 8 bit only, for 10 bit use -qp 0)
    # 23 is the default
    # 51 is worst quality possible
    # A lower value generally leads to higher quality, and a subjectively sane range is 17–28.
    # Consider 17 or 18 to be visually lossless or nearly so;
    # it should look the same or nearly the same as the input but it isn't technically lossless.
    # The range is exponential, so increasing the CRF value +6 results in roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
    quality: int = 18

    # STG (Spatiotemporal Guidance) settings
    stg_scale: float = 1.0
    stg_rescale: float = 0.7
    stg_mode: str = "attention_values"  # Can be "attention_values", "attention_skip", "residual", or "transformer_block"
    stg_skip_layers: str = "19"  # Comma-separated list of layers to block for spatiotemporal guidance

    # VAE noise augmentation
    decode_timestep: float = 0.05
    decode_noise_scale: float = 0.025

    # Other advanced settings
    image_cond_noise_scale: float = 0.15
    mixed_precision: bool = True  # Use mixed precision for inference
    stochastic_sampling: bool = False  # Use stochastic sampling

    # Sampling settings
    sampler: Optional[str] = None  # "uniform" or "linear-quadratic" or None (use default from checkpoint)

    # Prompt enhancement
    enhance_prompt: bool = False  # Whether to enhance the prompt using an LLM
    prompt_enhancement_words_threshold: int = 50  # Enhance prompt only if it has fewer words than this
    
    def validate_and_adjust(self) -> 'GenerationConfig':
        """Validate and adjust parameters to meet constraints"""
        # First check if it's one of our explicitly allowed resolutions
        if not ((self.width == MAX_LARGE_SIDE and self.height == MAX_SMALL_SIDE) or 
                (self.width == MAX_SMALL_SIDE and self.height == MAX_LARGE_SIDE)):
            # For other resolutions, ensure total pixels don't exceed max
            MAX_TOTAL_PIXELS = MAX_SMALL_SIDE * MAX_LARGE_SIDE  # or 921600 = 1280 * 720
            
            # If total pixels exceed maximum, scale down proportionally
            total_pixels = self.width * self.height
            if total_pixels > MAX_TOTAL_PIXELS:
                scale = (MAX_TOTAL_PIXELS / total_pixels) ** 0.5
                self.width = max(128, min(MAX_LARGE_SIDE, round(self.width * scale / 32) * 32))
                self.height = max(128, min(MAX_LARGE_SIDE, round(self.height * scale / 32) * 32))
            else:
                # Round dimensions to nearest multiple of 32
                self.width = max(128, min(MAX_LARGE_SIDE, round(self.width / 32) * 32))
                self.height = max(128, min(MAX_LARGE_SIDE, round(self.height / 32) * 32))
        
        # Adjust number of frames to be in format 8k + 1
        k = (self.num_frames - 1) // 8
        self.num_frames = min((k * 8) + 1, MAX_FRAMES)
    
        # Set random seed if not specified
        if self.seed == -1:
            self.seed = random.randint(0, 2**32 - 1)

        # Set up STG parameters
        if self.stg_mode.lower() == "stg_av" or self.stg_mode.lower() == "attention_values":
            self.stg_mode = "attention_values"
        elif self.stg_mode.lower() == "stg_as" or self.stg_mode.lower() == "attention_skip":
            self.stg_mode = "attention_skip"
        elif self.stg_mode.lower() == "stg_r" or self.stg_mode.lower() == "residual":
            self.stg_mode = "residual"
        elif self.stg_mode.lower() == "stg_t" or self.stg_mode.lower() == "transformer_block":
            self.stg_mode = "transformer_block"
        
        # Convert STG skip layers from string to list of integers
        if isinstance(self.stg_skip_layers, str):
            self.stg_skip_layers = [int(x.strip()) for x in self.stg_skip_layers.split(",")]

        # Check if we should enhance the prompt
        if self.enhance_prompt and self.prompt:
            prompt_word_count = len(self.prompt.split())
            if prompt_word_count >= self.prompt_enhancement_words_threshold:
                logger.info(f"Prompt has {prompt_word_count} words, which exceeds the threshold of {self.prompt_enhancement_words_threshold}. Prompt enhancement disabled.")
                self.enhance_prompt = False
    
        return self

def load_image_to_tensor_with_resize_and_crop(
    image_input: Union[str, bytes],
    target_height: int = 512,
    target_width: int = 768,
    quality: int = 100
) -> torch.Tensor:
    """Load and process an image into a tensor.

    Args:
        image_input: Either a file path (str) or image data (bytes)
        target_height: Desired height of output tensor
        target_width: Desired width of output tensor
        quality: JPEG quality to use when re-encoding (to simulate lower quality images)
    """
    from PIL import Image
    import io
    import numpy as np

    # Handle base64 data URI
    if isinstance(image_input, str) and image_input.startswith('data:'):
        header, encoded = image_input.split(",", 1)
        image_data = base64.b64decode(encoded)
        image = Image.open(io.BytesIO(image_data)).convert("RGB")
    # Handle raw bytes
    elif isinstance(image_input, bytes):
        image = Image.open(io.BytesIO(image_input)).convert("RGB")
    # Handle file path
    elif isinstance(image_input, str):
        image = Image.open(image_input).convert("RGB")
    else:
        raise ValueError("image_input must be either a file path, bytes, or base64 data URI")

    # Apply JPEG compression if quality < 100 (to simulate a video frame)
    if quality < 100:
        buffer = io.BytesIO()
        image.save(buffer, format="JPEG", quality=quality)
        buffer.seek(0)
        image = Image.open(buffer).convert("RGB")

    input_width, input_height = image.size
    aspect_ratio_target = target_width / target_height
    aspect_ratio_frame = input_width / input_height
    if aspect_ratio_frame > aspect_ratio_target:
        new_width = int(input_height * aspect_ratio_target)
        new_height = input_height
        x_start = (input_width - new_width) // 2
        y_start = 0
    else:
        new_width = input_width
        new_height = int(input_width / aspect_ratio_target)
        x_start = 0
        y_start = (input_height - new_height) // 2

    image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
    image = image.resize((target_width, target_height))
    frame_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float()
    frame_tensor = (frame_tensor / 127.5) - 1.0
    # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
    return frame_tensor.unsqueeze(0).unsqueeze(2)

def calculate_padding(
    source_height: int, source_width: int, target_height: int, target_width: int
) -> tuple[int, int, int, int]:
    """Calculate padding to reach target dimensions"""
    # Calculate total padding needed
    pad_height = target_height - source_height
    pad_width = target_width - source_width

    # Calculate padding for each side
    pad_top = pad_height // 2
    pad_bottom = pad_height - pad_top  # Handles odd padding
    pad_left = pad_width // 2
    pad_right = pad_width - pad_left  # Handles odd padding

    # Return padded tensor
    # Padding format is (left, right, top, bottom)
    padding = (pad_left, pad_right, pad_top, pad_bottom)
    return padding

def prepare_conditioning(
    conditioning_media_paths: List[str],
    conditioning_strengths: List[float],
    conditioning_start_frames: List[int],
    height: int,
    width: int,
    num_frames: int,
    input_image_quality: int = 100,
    pipeline: Optional[LTXVideoPipeline] = None,
) -> Optional[List[ConditioningItem]]:
    """Prepare conditioning items based on input media paths and their parameters"""
    conditioning_items = []
    for path, strength, start_frame in zip(
        conditioning_media_paths, conditioning_strengths, conditioning_start_frames
    ):
        # Load and process the conditioning image
        frame_tensor = load_image_to_tensor_with_resize_and_crop(
            path, height, width, quality=input_image_quality
        )
        
        # Trim frame count if needed
        if pipeline:
            frame_count = 1  # For image inputs, it's always 1
            frame_count = pipeline.trim_conditioning_sequence(
                start_frame, frame_count, num_frames
            )
            
        conditioning_items.append(
            ConditioningItem(frame_tensor, start_frame, strength)
        )

    return conditioning_items

def create_ltx_video_pipeline(
    config: GenerationConfig,
    device: str = "cuda"
) -> LTXVideoPipeline:
    """Create and configure the LTX video pipeline"""
    # Get the absolute paths for the model components
    current_dir = Path.cwd()

    ckpt_path = "./ltxv-2b-0.9.6-distilled-04-25.safetensors"
    
    # Get allowed inference steps from config if available
    allowed_inference_steps = None

    assert os.path.exists(
        ckpt_path
    ), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"

    with safe_open(ckpt_path, framework="pt") as f:
        metadata = f.metadata()
        config_str = metadata.get("config")
        configs = json.loads(config_str)
        allowed_inference_steps = configs.get("allowed_inference_steps", None)

    # Initialize model components
    vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
    transformer = Transformer3DModel.from_pretrained(ckpt_path)
    
    # Use constructor if sampler is specified, otherwise use from_pretrained
    if config.sampler:
        scheduler = RectifiedFlowScheduler(
            sampler=("Uniform" if config.sampler.lower() == "uniform" else "LinearQuadratic")
        )
    else:
        scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
    
    text_encoder = T5EncoderModel.from_pretrained("./text_encoder")
    patchifier = SymmetricPatchifier(patch_size=1)
    tokenizer = T5Tokenizer.from_pretrained("./tokenizer")
    
    # Move models to the correct device
    vae = vae.to(device)
    transformer = transformer.to(device)
    text_encoder = text_encoder.to(device)
    
    # Set up precision
    vae = vae.to(torch.bfloat16)
    transformer = transformer.to(torch.bfloat16)
    text_encoder = text_encoder.to(torch.bfloat16)
    
    # Initialize prompt enhancer components if needed
    prompt_enhancer_components = {
        "prompt_enhancer_image_caption_model": None,
        "prompt_enhancer_image_caption_processor": None,
        "prompt_enhancer_llm_model": None,
        "prompt_enhancer_llm_tokenizer": None
    }
    
    if config.enhance_prompt:
        try:
            # Use default models or ones specified by config
            prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
                "MiaoshouAI/Florence-2-large-PromptGen-v2.0", 
                trust_remote_code=True
            )
            prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
                "MiaoshouAI/Florence-2-large-PromptGen-v2.0", 
                trust_remote_code=True
            )
            prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
                "unsloth/Llama-3.2-3B-Instruct",
                torch_dtype="bfloat16",
            )
            prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
                "unsloth/Llama-3.2-3B-Instruct",
            )
            
            prompt_enhancer_components = {
                "prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
                "prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
                "prompt_enhancer_llm_model": prompt_enhancer_llm_model,
                "prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer
            }
        except Exception as e:
            logger.warning(f"Failed to load prompt enhancer models: {e}")
            config.enhance_prompt = False
    
    # Construct the pipeline
    pipeline = LTXVideoPipeline(
        transformer=transformer,
        patchifier=patchifier,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        scheduler=scheduler,
        vae=vae,
        allowed_inference_steps=allowed_inference_steps,
        **prompt_enhancer_components
    )
    
    return pipeline

class EndpointHandler:
    """Handler for the LTX Video endpoint"""
    
    def __init__(self, model_path: str = ""):
        """Initialize the endpoint handler
        
        Args:
            model_path: Path to model weights (not used, as weights are in current directory)
        """
        # Enable TF32 for potential speedup on Ampere GPUs
        torch.backends.cuda.matmul.allow_tf32 = True
        
        # Initialize Varnish for post-processing
        self.varnish = Varnish(
            device="cuda",
            model_base_dir="varnish",
            enable_mmaudio=False,  # Disable audio generation for now, since it is broken
        )
        
        # The actual LTX pipeline will be loaded during inference to save memory
        self.pipeline = None
        
    def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Process inference requests
        
        Args:
            data: Request data containing inputs and parameters
            
        Returns:
            Dictionary with generated video and metadata
        """
        # Extract inputs and parameters
        inputs = data.get("inputs", {})
        
        # Support both formats:
        # 1. {"inputs": {"prompt": "...", "image": "..."}}
        # 2. {"inputs": "..."} (prompt only)
        if isinstance(inputs, str):
            input_prompt = inputs
            input_image = None
        else:
            input_prompt = inputs.get("prompt", "")
            input_image = inputs.get("image")
        
        params = data.get("parameters", {})
        
        if not input_prompt and not input_image:
            raise ValueError("Either prompt or image must be provided")
        
        # Create and validate configuration
        config = GenerationConfig(
            # general content settings
            prompt=input_prompt,
            negative_prompt=params.get("negative_prompt", GenerationConfig.negative_prompt),
            
            # video model settings
            width=params.get("width", GenerationConfig.width),
            height=params.get("height", GenerationConfig.height),
            input_image_quality=params.get("input_image_quality", GenerationConfig.input_image_quality),
            num_frames=params.get("num_frames", GenerationConfig.num_frames),
            guidance_scale=params.get("guidance_scale", GenerationConfig.guidance_scale),
            num_inference_steps=params.get("num_inference_steps", GenerationConfig.num_inference_steps),
            
            # STG settings
            stg_scale=params.get("stg_scale", GenerationConfig.stg_scale),
            stg_rescale=params.get("stg_rescale", GenerationConfig.stg_rescale),
            stg_mode=params.get("stg_mode", GenerationConfig.stg_mode),
            stg_skip_layers=params.get("stg_skip_layers", GenerationConfig.stg_skip_layers),
            
            # VAE noise settings
            decode_timestep=params.get("decode_timestep", GenerationConfig.decode_timestep),
            decode_noise_scale=params.get("decode_noise_scale", GenerationConfig.decode_noise_scale),
            image_cond_noise_scale=params.get("image_cond_noise_scale", GenerationConfig.image_cond_noise_scale),
            
            # reproducible generation settings
            seed=params.get("seed", GenerationConfig.seed),
            
            # varnish settings
            fps=params.get("fps", GenerationConfig.fps),
            double_num_frames=params.get("double_num_frames", GenerationConfig.double_num_frames),
            super_resolution=params.get("super_resolution", GenerationConfig.super_resolution),
            grain_amount=params.get("grain_amount", GenerationConfig.grain_amount),
            enable_audio=params.get("enable_audio", GenerationConfig.enable_audio),
            audio_prompt=params.get("audio_prompt", GenerationConfig.audio_prompt),
            audio_negative_prompt=params.get("audio_negative_prompt", GenerationConfig.audio_negative_prompt),
            quality=params.get("quality", GenerationConfig.quality),
            
            # advanced settings
            mixed_precision=params.get("mixed_precision", GenerationConfig.mixed_precision),
            stochastic_sampling=params.get("stochastic_sampling", GenerationConfig.stochastic_sampling),
            sampler=params.get("sampler", GenerationConfig.sampler),
            
            # prompt enhancement
            enhance_prompt=params.get("enhance_prompt", GenerationConfig.enhance_prompt),
            prompt_enhancement_words_threshold=params.get(
                "prompt_enhancement_words_threshold", 
                GenerationConfig.prompt_enhancement_words_threshold
            ),
        ).validate_and_adjust()
        
        try:
            with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16), torch.no_grad():
                # Set random seeds for reproducibility
                random.seed(config.seed)
                np.random.seed(config.seed)
                torch.manual_seed(config.seed)
                generator = torch.Generator(device='cuda').manual_seed(config.seed)
                
                # Create pipeline if not already created
                if self.pipeline is None:
                    self.pipeline = create_ltx_video_pipeline(config)
                
                # Prepare conditioning items if an image is provided
                conditioning_items = None
                if input_image:
                    conditioning_items = [
                        ConditioningItem(
                            load_image_to_tensor_with_resize_and_crop(
                                input_image, 
                                config.height, 
                                config.width,
                                quality=config.input_image_quality
                            ),
                            0,  # Start frame
                            1.0  # Conditioning strength
                        )
                    ]
                
                # Set up spatiotemporal guidance strategy
                if config.stg_mode == "attention_values":
                    skip_layer_strategy = SkipLayerStrategy.AttentionValues
                elif config.stg_mode == "attention_skip":
                    skip_layer_strategy = SkipLayerStrategy.AttentionSkip
                elif config.stg_mode == "residual":
                    skip_layer_strategy = SkipLayerStrategy.Residual
                elif config.stg_mode == "transformer_block":
                    skip_layer_strategy = SkipLayerStrategy.TransformerBlock
                
                # Generate video with LTX pipeline
                result = self.pipeline(
                    height=config.height,
                    width=config.width,
                    num_frames=config.num_frames,
                    frame_rate=config.fps,
                    prompt=config.prompt,
                    negative_prompt=config.negative_prompt,
                    guidance_scale=config.guidance_scale,
                    num_inference_steps=config.num_inference_steps,
                    generator=generator,
                    output_type="pt",  # Return as PyTorch tensor
                    skip_layer_strategy=skip_layer_strategy,
                    skip_block_list=config.stg_skip_layers,
                    stg_scale=config.stg_scale,
                    do_rescaling=config.stg_rescale != 1.0,
                    rescaling_scale=config.stg_rescale,
                    conditioning_items=conditioning_items,
                    decode_timestep=config.decode_timestep,
                    decode_noise_scale=config.decode_noise_scale,
                    image_cond_noise_scale=config.image_cond_noise_scale,
                    mixed_precision=config.mixed_precision,
                    is_video=True,
                    vae_per_channel_normalize=True,
                    stochastic_sampling=config.stochastic_sampling,
                    enhance_prompt=config.enhance_prompt,
                )
                
                # Get the generated frames
                frames = result.images
                
                # Process the generated frames with Varnish
                import asyncio
                try:
                    loop = asyncio.get_event_loop()
                except RuntimeError:
                    loop = asyncio.new_event_loop()
                    asyncio.set_event_loop(loop)
                
                # Prepare frames for Varnish (denormalize to 0-255 range)
                frames = frames * 127.5 + 127.5
                frames = frames.to(torch.uint8)
                
                # Process with Varnish for post-processing
                varnish_result = loop.run_until_complete(
                    self.varnish(
                        frames,
                        fps=config.fps,
                        double_num_frames=config.double_num_frames,
                        super_resolution=config.super_resolution,
                        grain_amount=config.grain_amount,
                        enable_audio=config.enable_audio,
                        audio_prompt=config.audio_prompt or config.prompt,
                        audio_negative_prompt=config.audio_negative_prompt,
                    )
                )
                
                # Get the final video as a data URI
                video_uri = loop.run_until_complete(
                    varnish_result.write(
                        type="data-uri",
                        quality=config.quality
                    )
                )
                
                # Prepare metadata about the generated video
                metadata = {
                    "width": varnish_result.metadata.width,
                    "height": varnish_result.metadata.height,
                    "num_frames": varnish_result.metadata.frame_count,
                    "fps": varnish_result.metadata.fps,
                    "duration": varnish_result.metadata.duration,
                    "seed": config.seed,
                    "prompt": config.prompt,
                }
                
                # Clean up to prevent CUDA OOM errors
                del result
                torch.cuda.empty_cache()
                gc.collect()
                
                return {
                    "video": video_uri,
                    "content-type": "video/mp4",
                    "metadata": metadata
                }
                
        except Exception as e:
            # Log the error and reraise
            import traceback
            error_message = f"Error generating video: {str(e)}\n{traceback.format_exc()}"
            logger.error(error_message)
            raise RuntimeError(error_message)