--- license: mit --- # GeLinear GeLinear is the implementation of [LoLCATs](https://arxiv.org/pdf/2410.10254), but with Gemma 2 model. Unlike the original LoLCATs approach that linearizes all attention layers, I focuses on linearizing only the global attention layer, while retaining Gemma 2’s built-in Sliding Window Attention (SWA) for local context (since the time complexity for this already scaled linearly with sequence length). To run the model: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model = AutoModelForCausalLM.from_pretrained("jacksonkek/GeLinear",trust_remote_code=True,torch_dtype=torch.bfloat16,device_map="sequential") tokenizer = AutoTokenizer.from_pretrained("jacksonkek/GeLinear") x = "tell me a joke" input_text = [{"role":"user","content":x}] input_ids = tokenizer.apply_chat_template(input_text, add_generation_prompt=True,return_tensors="pt").to("cuda") text_streamer = TextStreamer(tokenizer) _ = model.generate(input_ids, streamer = text_streamer, do_sample=False,max_new_tokens = 8192) ```