itdainb commited on
Commit
a6b4b15
·
verified ·
1 Parent(s): 208a846

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -38,6 +38,8 @@ sentences = [
38
 
39
  tokenized_query = ViTokenizer.tokenize(query)
40
  tokenized_sentences = [ViTokenizer.tokenize(sent) for sent in sentences]
 
 
41
  ```
42
 
43
  ## Usage with sentence-transformers
@@ -45,22 +47,28 @@ tokenized_sentences = [ViTokenizer.tokenize(sent) for sent in sentences]
45
  ```python
46
  from sentence_transformers import CrossEncoder
47
  model = CrossEncoder('itdainb/vietnamese-cross-encoder', max_length=256)
48
- scores = model.predict([(tokenized_query, sent) for sent in tokenized_sentences])
49
  ```
50
 
51
  ## Usage with transformers
52
 
53
  ```python
54
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
55
  import torch
56
 
57
  model = AutoModelForSequenceClassification.from_pretrained('itdainb/vietnamese-cross-encoder')
58
  tokenizer = AutoTokenizer.from_pretrained('itdainb/vietnamese-cross-encoder')
59
 
60
- features = tokenizer([[tokenized_query, sent] for sent in tokenized_sentences], padding=True, truncation=True, return_tensors="pt")
 
 
61
 
62
  model.eval()
63
  with torch.no_grad():
64
- scores = model(**features).logits
 
 
 
65
  print(scores)
66
  ```
 
38
 
39
  tokenized_query = ViTokenizer.tokenize(query)
40
  tokenized_sentences = [ViTokenizer.tokenize(sent) for sent in sentences]
41
+
42
+ tokenized_pairs = [[tokenized_query, sent] for sent in tokenized_sentences]
43
  ```
44
 
45
  ## Usage with sentence-transformers
 
47
  ```python
48
  from sentence_transformers import CrossEncoder
49
  model = CrossEncoder('itdainb/vietnamese-cross-encoder', max_length=256)
50
+ scores = model.predict(tokenized_pairs)
51
  ```
52
 
53
  ## Usage with transformers
54
 
55
  ```python
56
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
57
+
58
  import torch
59
 
60
  model = AutoModelForSequenceClassification.from_pretrained('itdainb/vietnamese-cross-encoder')
61
  tokenizer = AutoTokenizer.from_pretrained('itdainb/vietnamese-cross-encoder')
62
 
63
+ activation_fct = torch.nn.Identity()
64
+
65
+ features = tokenizer(*tokenized_pairs, padding=True, truncation="longest_first", return_tensors="pt", max_length=tokenizer.config.max_length)
66
 
67
  model.eval()
68
  with torch.no_grad():
69
+ model_predictions = self.model(**features, return_dict=True)
70
+ logits = activation_fct(model_predictions.logits)
71
+
72
+ scores = [score[0] for score in logits]
73
  print(scores)
74
  ```