from transformers import Pipeline class QAAssessmentPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "text" in kwargs: preprocess_kwargs["text"] = kwargs["text"] return preprocess_kwargs, {}, {} def preprocess(self, text, **kwargs): # Nothing to preprocess return text def _forward(self, text, **kwargs): predictions = self.model(text) return predictions def postprocess(self, outputs, **kwargs): predictions = outputs # print(f"Predictions: {predictions}") # Format as JSON-compatible dictionary # model_output = {"label": label, "score": round(score, 4)} return {"ocr_quality_score": round(predictions[0], 4)}