from transformers import Pipeline | |
class QAAssessmentPipeline(Pipeline): | |
def _sanitize_parameters(self, **kwargs): | |
preprocess_kwargs = {} | |
if "text" in kwargs: | |
preprocess_kwargs["text"] = kwargs["text"] | |
return preprocess_kwargs, {}, {} | |
def preprocess(self, text, **kwargs): | |
# Nothing to preprocess | |
return text | |
def _forward(self, text, **kwargs): | |
predictions = self.model(text) | |
return predictions | |
def postprocess(self, outputs, **kwargs): | |
predictions = outputs | |
# print(f"Predictions: {predictions}") | |
# Format as JSON-compatible dictionary | |
# model_output = {"label": label, "score": round(score, 4)} | |
return {"ocr_quality_score": round(predictions[0], 4)} | |