Upload fused_norm_gate.py
Browse files- fused_norm_gate.py +896 -0
fused_norm_gate.py
ADDED
@@ -0,0 +1,896 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
# Copyright (c) 2023, Tri Dao.
|
4 |
+
# https://github.com/state-spaces/mamba/blob/fb7b5310fa865dbd62aa059b1e26f2b431363e2a/mamba_ssm/ops/triton/layernorm.py
|
5 |
+
# Implement residual + layer_norm / rms_norm.
|
6 |
+
|
7 |
+
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
8 |
+
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
9 |
+
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
10 |
+
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
11 |
+
|
12 |
+
from __future__ import annotations
|
13 |
+
|
14 |
+
import math
|
15 |
+
|
16 |
+
import functools
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import triton
|
22 |
+
import triton.language as tl
|
23 |
+
|
24 |
+
def contiguous(fn):
|
25 |
+
@functools.wraps(fn)
|
26 |
+
def wrapper(ctx, *args, **kwargs):
|
27 |
+
return fn(ctx,
|
28 |
+
*(i if not isinstance(i, torch.Tensor) else i.contiguous() for i in args),
|
29 |
+
**{k: (v if not isinstance(v, torch.Tensor) else v.contiguous()) for k, v in kwargs.items()})
|
30 |
+
return wrapper
|
31 |
+
|
32 |
+
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
33 |
+
dtype = x.dtype
|
34 |
+
if upcast:
|
35 |
+
weight = weight.float()
|
36 |
+
bias = bias.float() if bias is not None else None
|
37 |
+
if upcast:
|
38 |
+
x = x.float()
|
39 |
+
residual = residual.float() if residual is not None else residual
|
40 |
+
if residual is not None:
|
41 |
+
x = (x + residual).to(x.dtype)
|
42 |
+
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
43 |
+
dtype
|
44 |
+
)
|
45 |
+
return out if not prenorm else (out, x)
|
46 |
+
|
47 |
+
|
48 |
+
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
49 |
+
dtype = x.dtype
|
50 |
+
if upcast:
|
51 |
+
weight = weight.float()
|
52 |
+
bias = bias.float() if bias is not None else None
|
53 |
+
if upcast:
|
54 |
+
x = x.float()
|
55 |
+
residual = residual.float() if residual is not None else residual
|
56 |
+
if residual is not None:
|
57 |
+
x = (x + residual).to(x.dtype)
|
58 |
+
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
59 |
+
out = (x * rstd * weight) + \
|
60 |
+
bias if bias is not None else (x * rstd * weight)
|
61 |
+
out = out.to(dtype)
|
62 |
+
return out if not prenorm else (out, x)
|
63 |
+
|
64 |
+
|
65 |
+
@triton.autotune(
|
66 |
+
configs=[
|
67 |
+
triton.Config({}, num_warps=1),
|
68 |
+
triton.Config({}, num_warps=2),
|
69 |
+
triton.Config({}, num_warps=4),
|
70 |
+
triton.Config({}, num_warps=8),
|
71 |
+
triton.Config({}, num_warps=16),
|
72 |
+
triton.Config({}, num_warps=32),
|
73 |
+
],
|
74 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
75 |
+
)
|
76 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
77 |
+
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
78 |
+
@triton.jit
|
79 |
+
def _layer_norm_fwd_1pass_kernel(
|
80 |
+
X, # pointer to the input
|
81 |
+
O, # pointer to the gate
|
82 |
+
Y, # pointer to the output
|
83 |
+
W, # pointer to the weights
|
84 |
+
B, # pointer to the biases
|
85 |
+
RESIDUAL, # pointer to the residual
|
86 |
+
RESIDUAL_OUT, # pointer to the residual
|
87 |
+
Mean, # pointer to the mean
|
88 |
+
Rstd, # pointer to the 1/std
|
89 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
90 |
+
stride_y_row,
|
91 |
+
stride_res_row,
|
92 |
+
stride_res_out_row,
|
93 |
+
N, # number of columns in X
|
94 |
+
eps, # epsilon to avoid division by zero
|
95 |
+
IS_RMS_NORM: tl.constexpr,
|
96 |
+
BLOCK_N: tl.constexpr,
|
97 |
+
HAS_RESIDUAL: tl.constexpr,
|
98 |
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
99 |
+
HAS_WEIGHT: tl.constexpr,
|
100 |
+
HAS_BIAS: tl.constexpr
|
101 |
+
):
|
102 |
+
# Map the program id to the row of X and Y it should compute.
|
103 |
+
row = tl.program_id(0)
|
104 |
+
X += row * stride_x_row
|
105 |
+
Y += row * stride_y_row
|
106 |
+
O += row * stride_x_row
|
107 |
+
if HAS_RESIDUAL:
|
108 |
+
RESIDUAL += row * stride_res_row
|
109 |
+
if STORE_RESIDUAL_OUT:
|
110 |
+
RESIDUAL_OUT += row * stride_res_out_row
|
111 |
+
# Compute mean and variance
|
112 |
+
cols = tl.arange(0, BLOCK_N)
|
113 |
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
114 |
+
if HAS_RESIDUAL:
|
115 |
+
residual = tl.load(RESIDUAL + cols, mask=cols <
|
116 |
+
N, other=0.0).to(tl.float32)
|
117 |
+
x += residual
|
118 |
+
if STORE_RESIDUAL_OUT:
|
119 |
+
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
120 |
+
if not IS_RMS_NORM:
|
121 |
+
mean = tl.sum(x, axis=0) / N
|
122 |
+
tl.store(Mean + row, mean)
|
123 |
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
124 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
125 |
+
else:
|
126 |
+
xbar = tl.where(cols < N, x, 0.0)
|
127 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
128 |
+
rstd = 1 / tl.sqrt(var + eps)
|
129 |
+
tl.store(Rstd + row, rstd)
|
130 |
+
# Normalize and apply linear transformation
|
131 |
+
mask = cols < N
|
132 |
+
if HAS_WEIGHT:
|
133 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
134 |
+
if HAS_BIAS:
|
135 |
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
136 |
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
137 |
+
y = x_hat * w if HAS_WEIGHT else x_hat
|
138 |
+
if HAS_BIAS:
|
139 |
+
y = y + b
|
140 |
+
|
141 |
+
# Swish output gate
|
142 |
+
o = tl.load(O + cols, mask=cols < N, other=0.0).to(tl.float32)
|
143 |
+
y = y * o * tl.sigmoid(o)
|
144 |
+
|
145 |
+
# Write output
|
146 |
+
tl.store(Y + cols, y, mask=mask)
|
147 |
+
|
148 |
+
|
149 |
+
def _layer_norm_fwd(
|
150 |
+
x, o, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False
|
151 |
+
):
|
152 |
+
if residual is not None:
|
153 |
+
residual_dtype = residual.dtype
|
154 |
+
M, N = x.shape
|
155 |
+
assert x.stride(-1) == 1
|
156 |
+
if residual is not None:
|
157 |
+
assert residual.stride(-1) == 1
|
158 |
+
assert residual.shape == (M, N)
|
159 |
+
if weight is not None:
|
160 |
+
assert weight.shape == (N,)
|
161 |
+
assert weight.stride(-1) == 1
|
162 |
+
if bias is not None:
|
163 |
+
assert bias.stride(-1) == 1
|
164 |
+
assert bias.shape == (N,)
|
165 |
+
# allocate output
|
166 |
+
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
167 |
+
assert y.stride(-1) == 1
|
168 |
+
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
|
169 |
+
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
|
170 |
+
assert residual_out.stride(-1) == 1
|
171 |
+
else:
|
172 |
+
residual_out = None
|
173 |
+
mean = torch.empty((M,), dtype=torch.float32,
|
174 |
+
device="cuda") if not is_rms_norm else None
|
175 |
+
rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
|
176 |
+
# Less than 64KB per feature: enqueue fused kernel
|
177 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
178 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
179 |
+
if N > BLOCK_N:
|
180 |
+
raise RuntimeError(
|
181 |
+
"This layer norm doesn't support feature dim >= 64KB.")
|
182 |
+
# heuristics for number of warps
|
183 |
+
with torch.cuda.device(x.device.index):
|
184 |
+
_layer_norm_fwd_1pass_kernel[(M,)](
|
185 |
+
x,
|
186 |
+
o,
|
187 |
+
y,
|
188 |
+
weight,
|
189 |
+
bias,
|
190 |
+
residual,
|
191 |
+
residual_out,
|
192 |
+
mean,
|
193 |
+
rstd,
|
194 |
+
x.stride(0),
|
195 |
+
y.stride(0),
|
196 |
+
residual.stride(0) if residual is not None else 0,
|
197 |
+
residual_out.stride(0) if residual_out is not None else 0,
|
198 |
+
N,
|
199 |
+
eps,
|
200 |
+
is_rms_norm,
|
201 |
+
BLOCK_N,
|
202 |
+
residual is not None,
|
203 |
+
residual_out is not None,
|
204 |
+
weight is not None,
|
205 |
+
bias is not None,
|
206 |
+
)
|
207 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype
|
208 |
+
return y, mean, rstd, residual_out if residual_out is not None else x
|
209 |
+
|
210 |
+
|
211 |
+
@triton.autotune(
|
212 |
+
configs=[
|
213 |
+
triton.Config({}, num_warps=1),
|
214 |
+
triton.Config({}, num_warps=2),
|
215 |
+
triton.Config({}, num_warps=4),
|
216 |
+
triton.Config({}, num_warps=8),
|
217 |
+
triton.Config({}, num_warps=16),
|
218 |
+
triton.Config({}, num_warps=32),
|
219 |
+
],
|
220 |
+
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
|
221 |
+
)
|
222 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
223 |
+
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
224 |
+
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
225 |
+
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
226 |
+
@triton.jit
|
227 |
+
def _layer_norm_bwd_kernel(
|
228 |
+
X, # pointer to the input
|
229 |
+
O, # pointer to the gate
|
230 |
+
W, # pointer to the weights
|
231 |
+
B, # pointer to the biases
|
232 |
+
Y, # pointer to the output to be recomputed
|
233 |
+
DY, # pointer to the output gradient
|
234 |
+
DX, # pointer to the input gradient
|
235 |
+
DO, # pointer to the gate gradient
|
236 |
+
DW, # pointer to the partial sum of weights gradient
|
237 |
+
DB, # pointer to the partial sum of biases gradient
|
238 |
+
DRESIDUAL,
|
239 |
+
DRESIDUAL_IN,
|
240 |
+
Mean, # pointer to the mean
|
241 |
+
Rstd, # pointer to the 1/std
|
242 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
243 |
+
stride_y_row,
|
244 |
+
stride_dy_row,
|
245 |
+
stride_dx_row,
|
246 |
+
stride_dres_row,
|
247 |
+
stride_dres_in_row,
|
248 |
+
M, # number of rows in X
|
249 |
+
N, # number of columns in X
|
250 |
+
eps, # epsilon to avoid division by zero
|
251 |
+
rows_per_program,
|
252 |
+
IS_RMS_NORM: tl.constexpr,
|
253 |
+
BLOCK_N: tl.constexpr,
|
254 |
+
HAS_DRESIDUAL: tl.constexpr,
|
255 |
+
STORE_DRESIDUAL: tl.constexpr,
|
256 |
+
HAS_WEIGHT: tl.constexpr,
|
257 |
+
HAS_BIAS: tl.constexpr,
|
258 |
+
RECOMPUTE_OUTPUT: tl.constexpr,
|
259 |
+
):
|
260 |
+
# Map the program id to the elements of X, DX, and DY it should compute.
|
261 |
+
row_block_id = tl.program_id(0)
|
262 |
+
row_start = row_block_id * rows_per_program
|
263 |
+
cols = tl.arange(0, BLOCK_N)
|
264 |
+
mask = cols < N
|
265 |
+
X += row_start * stride_x_row
|
266 |
+
O += row_start * stride_x_row
|
267 |
+
if HAS_DRESIDUAL:
|
268 |
+
DRESIDUAL += row_start * stride_dres_row
|
269 |
+
if STORE_DRESIDUAL:
|
270 |
+
DRESIDUAL_IN += row_start * stride_dres_in_row
|
271 |
+
DY += row_start * stride_dy_row
|
272 |
+
DX += row_start * stride_dx_row
|
273 |
+
DO += row_start * stride_dx_row
|
274 |
+
if RECOMPUTE_OUTPUT:
|
275 |
+
Y += row_start * stride_y_row
|
276 |
+
if HAS_WEIGHT:
|
277 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
278 |
+
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
279 |
+
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
280 |
+
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
281 |
+
if HAS_BIAS:
|
282 |
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
283 |
+
row_end = min((row_block_id + 1) * rows_per_program, M)
|
284 |
+
for row in range(row_start, row_end):
|
285 |
+
# Load data to SRAM
|
286 |
+
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
287 |
+
o = tl.load(O + cols, mask=mask, other=0).to(tl.float32)
|
288 |
+
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
289 |
+
|
290 |
+
if not IS_RMS_NORM:
|
291 |
+
mean = tl.load(Mean + row)
|
292 |
+
rstd = tl.load(Rstd + row)
|
293 |
+
# Compute dx
|
294 |
+
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
295 |
+
xhat = tl.where(mask, xhat, 0.0)
|
296 |
+
|
297 |
+
y = xhat * w if HAS_WEIGHT else xhat
|
298 |
+
if HAS_BIAS:
|
299 |
+
y = y + b
|
300 |
+
if RECOMPUTE_OUTPUT:
|
301 |
+
tl.store(Y + cols, y, mask=mask)
|
302 |
+
|
303 |
+
sigmoid_o = tl.sigmoid(o)
|
304 |
+
do = dy * y * (sigmoid_o + o * sigmoid_o * (1 - sigmoid_o))
|
305 |
+
dy = dy * o * sigmoid_o
|
306 |
+
wdy = dy
|
307 |
+
if HAS_WEIGHT:
|
308 |
+
wdy = dy * w
|
309 |
+
dw += dy * xhat
|
310 |
+
if HAS_BIAS:
|
311 |
+
db += dy
|
312 |
+
if not IS_RMS_NORM:
|
313 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
314 |
+
c2 = tl.sum(wdy, axis=0) / N
|
315 |
+
dx = (wdy - (xhat * c1 + c2)) * rstd
|
316 |
+
else:
|
317 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
318 |
+
dx = (wdy - xhat * c1) * rstd
|
319 |
+
if HAS_DRESIDUAL:
|
320 |
+
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
321 |
+
dx += dres
|
322 |
+
# Write dx
|
323 |
+
if STORE_DRESIDUAL:
|
324 |
+
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
325 |
+
tl.store(DX + cols, dx, mask=mask)
|
326 |
+
tl.store(DO + cols, do, mask=mask)
|
327 |
+
|
328 |
+
X += stride_x_row
|
329 |
+
O += stride_x_row
|
330 |
+
if HAS_DRESIDUAL:
|
331 |
+
DRESIDUAL += stride_dres_row
|
332 |
+
if STORE_DRESIDUAL:
|
333 |
+
DRESIDUAL_IN += stride_dres_in_row
|
334 |
+
if RECOMPUTE_OUTPUT:
|
335 |
+
Y += stride_y_row
|
336 |
+
DY += stride_dy_row
|
337 |
+
DX += stride_dx_row
|
338 |
+
DO += stride_dx_row
|
339 |
+
if HAS_WEIGHT:
|
340 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
341 |
+
if HAS_BIAS:
|
342 |
+
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
343 |
+
|
344 |
+
|
345 |
+
def _layer_norm_bwd(
|
346 |
+
dy,
|
347 |
+
x,
|
348 |
+
o,
|
349 |
+
weight,
|
350 |
+
bias,
|
351 |
+
eps,
|
352 |
+
mean,
|
353 |
+
rstd,
|
354 |
+
dresidual=None,
|
355 |
+
has_residual=False,
|
356 |
+
is_rms_norm=False,
|
357 |
+
x_dtype=None,
|
358 |
+
recompute_output=False,
|
359 |
+
):
|
360 |
+
M, N = x.shape
|
361 |
+
assert x.stride(-1) == 1
|
362 |
+
assert dy.stride(-1) == 1
|
363 |
+
assert dy.shape == (M, N)
|
364 |
+
if dresidual is not None:
|
365 |
+
assert dresidual.stride(-1) == 1
|
366 |
+
assert dresidual.shape == (M, N)
|
367 |
+
if weight is not None:
|
368 |
+
assert weight.shape == (N,)
|
369 |
+
assert weight.stride(-1) == 1
|
370 |
+
if bias is not None:
|
371 |
+
assert bias.stride(-1) == 1
|
372 |
+
assert bias.shape == (N,)
|
373 |
+
# allocate output
|
374 |
+
dx = (
|
375 |
+
torch.empty_like(x)
|
376 |
+
if x_dtype is None
|
377 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
378 |
+
)
|
379 |
+
do = (
|
380 |
+
torch.empty_like(o)
|
381 |
+
if x_dtype is None
|
382 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
383 |
+
)
|
384 |
+
dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
|
385 |
+
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
386 |
+
|
387 |
+
# Less than 64KB per feature: enqueue fused kernel
|
388 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
389 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
390 |
+
if N > BLOCK_N:
|
391 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
392 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
393 |
+
_dw = (
|
394 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
395 |
+
if weight is not None
|
396 |
+
else None
|
397 |
+
)
|
398 |
+
_db = (
|
399 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
400 |
+
if bias is not None
|
401 |
+
else None
|
402 |
+
)
|
403 |
+
rows_per_program = math.ceil(M / sm_count)
|
404 |
+
grid = (sm_count,)
|
405 |
+
with torch.cuda.device(x.device.index):
|
406 |
+
_layer_norm_bwd_kernel[grid](
|
407 |
+
x,
|
408 |
+
o,
|
409 |
+
weight,
|
410 |
+
bias,
|
411 |
+
y,
|
412 |
+
dy,
|
413 |
+
dx,
|
414 |
+
do,
|
415 |
+
_dw,
|
416 |
+
_db,
|
417 |
+
dresidual,
|
418 |
+
dresidual_in,
|
419 |
+
mean,
|
420 |
+
rstd,
|
421 |
+
x.stride(0),
|
422 |
+
0 if not recompute_output else y.stride(0),
|
423 |
+
dy.stride(0),
|
424 |
+
dx.stride(0),
|
425 |
+
dresidual.stride(0) if dresidual is not None else 0,
|
426 |
+
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
427 |
+
M,
|
428 |
+
N,
|
429 |
+
eps,
|
430 |
+
rows_per_program,
|
431 |
+
is_rms_norm,
|
432 |
+
BLOCK_N,
|
433 |
+
dresidual is not None,
|
434 |
+
dresidual_in is not None,
|
435 |
+
weight is not None,
|
436 |
+
bias is not None,
|
437 |
+
)
|
438 |
+
dw = _dw.sum(0).to(weight.dtype) if weight is not None else None
|
439 |
+
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
440 |
+
# Don't need to compute dresidual_in separately in this case
|
441 |
+
if has_residual and dx.dtype == x.dtype:
|
442 |
+
dresidual_in = dx
|
443 |
+
return (dx, do, dw, db, dresidual_in) if not recompute_output else (dx, do, dw, db, dresidual_in, y)
|
444 |
+
|
445 |
+
|
446 |
+
class LayerNormSwishGateFn(torch.autograd.Function):
|
447 |
+
|
448 |
+
@staticmethod
|
449 |
+
@contiguous
|
450 |
+
def forward(
|
451 |
+
ctx,
|
452 |
+
x,
|
453 |
+
o,
|
454 |
+
weight,
|
455 |
+
bias,
|
456 |
+
residual=None,
|
457 |
+
eps=1e-6,
|
458 |
+
prenorm=False,
|
459 |
+
residual_in_fp32=False,
|
460 |
+
is_rms_norm=False,
|
461 |
+
):
|
462 |
+
x_shape_og = x.shape
|
463 |
+
o_shape_og = o.shape
|
464 |
+
# reshape input data into 2D tensor
|
465 |
+
x = x.reshape(-1, x.shape[-1])
|
466 |
+
o = o.reshape(-1, o.shape[-1])
|
467 |
+
if residual is not None:
|
468 |
+
assert residual.shape == x_shape_og
|
469 |
+
residual = residual.reshape(-1, residual.shape[-1])
|
470 |
+
residual_dtype = (
|
471 |
+
residual.dtype
|
472 |
+
if residual is not None
|
473 |
+
else (torch.float32 if residual_in_fp32 else None)
|
474 |
+
)
|
475 |
+
y, mean, rstd, residual_out = _layer_norm_fwd(
|
476 |
+
x, o, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
|
477 |
+
)
|
478 |
+
ctx.save_for_backward(residual_out, o, weight, bias, mean, rstd)
|
479 |
+
ctx.x_shape_og = x_shape_og
|
480 |
+
ctx.o_shape_og = o_shape_og
|
481 |
+
ctx.eps = eps
|
482 |
+
ctx.is_rms_norm = is_rms_norm
|
483 |
+
ctx.has_residual = residual is not None
|
484 |
+
ctx.prenorm = prenorm
|
485 |
+
ctx.x_dtype = x.dtype
|
486 |
+
y = y.reshape(x_shape_og)
|
487 |
+
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
|
488 |
+
|
489 |
+
@staticmethod
|
490 |
+
@contiguous
|
491 |
+
def backward(ctx, dy, *args):
|
492 |
+
x, o, weight, bias, mean, rstd = ctx.saved_tensors
|
493 |
+
dy = dy.reshape(-1, dy.shape[-1])
|
494 |
+
assert dy.shape == x.shape
|
495 |
+
if ctx.prenorm:
|
496 |
+
dresidual = args[0]
|
497 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
498 |
+
assert dresidual.shape == x.shape
|
499 |
+
else:
|
500 |
+
dresidual = None
|
501 |
+
dx, do, dw, db, dresidual_in = _layer_norm_bwd(
|
502 |
+
dy,
|
503 |
+
x,
|
504 |
+
o,
|
505 |
+
weight,
|
506 |
+
bias,
|
507 |
+
ctx.eps,
|
508 |
+
mean,
|
509 |
+
rstd,
|
510 |
+
dresidual,
|
511 |
+
ctx.has_residual,
|
512 |
+
ctx.is_rms_norm,
|
513 |
+
x_dtype=ctx.x_dtype,
|
514 |
+
)
|
515 |
+
return (
|
516 |
+
dx.reshape(ctx.x_shape_og),
|
517 |
+
do.reshape(ctx.o_shape_og),
|
518 |
+
dw,
|
519 |
+
db,
|
520 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
521 |
+
None,
|
522 |
+
None,
|
523 |
+
None,
|
524 |
+
None,
|
525 |
+
)
|
526 |
+
|
527 |
+
|
528 |
+
class LayerNormSwishGateLinearFn(torch.autograd.Function):
|
529 |
+
|
530 |
+
@staticmethod
|
531 |
+
@contiguous
|
532 |
+
def forward(
|
533 |
+
ctx,
|
534 |
+
x,
|
535 |
+
o,
|
536 |
+
norm_weight,
|
537 |
+
norm_bias,
|
538 |
+
linear_weight,
|
539 |
+
linear_bias,
|
540 |
+
residual=None,
|
541 |
+
eps=1e-6,
|
542 |
+
prenorm=False,
|
543 |
+
residual_in_fp32=False,
|
544 |
+
is_rms_norm=False,
|
545 |
+
):
|
546 |
+
x_shape_og = x.shape
|
547 |
+
o_shape_og = o.shape
|
548 |
+
# reshape input data into 2D tensor
|
549 |
+
x = x.reshape(-1, x.shape[-1])
|
550 |
+
o = o.reshape(-1, o.shape[-1])
|
551 |
+
if residual is not None:
|
552 |
+
assert residual.shape == x_shape_og
|
553 |
+
residual = residual.reshape(-1, residual.shape[-1])
|
554 |
+
residual_dtype = (
|
555 |
+
residual.dtype
|
556 |
+
if residual is not None
|
557 |
+
else (torch.float32 if residual_in_fp32 else None)
|
558 |
+
)
|
559 |
+
y, mean, rstd, residual_out = _layer_norm_fwd(
|
560 |
+
x,
|
561 |
+
o,
|
562 |
+
norm_weight,
|
563 |
+
norm_bias,
|
564 |
+
eps,
|
565 |
+
residual,
|
566 |
+
residual_dtype=residual_dtype,
|
567 |
+
is_rms_norm=is_rms_norm
|
568 |
+
)
|
569 |
+
y = y.reshape(x_shape_og)
|
570 |
+
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
|
571 |
+
linear_weight = linear_weight.to(dtype)
|
572 |
+
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
573 |
+
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
574 |
+
# We don't store y, will be recomputed in the backward pass to save memory
|
575 |
+
ctx.save_for_backward(residual_out, o, norm_weight, norm_bias, linear_weight, mean, rstd)
|
576 |
+
ctx.x_shape_og = x_shape_og
|
577 |
+
ctx.o_shape_og = o_shape_og
|
578 |
+
ctx.eps = eps
|
579 |
+
ctx.is_rms_norm = is_rms_norm
|
580 |
+
ctx.has_residual = residual is not None
|
581 |
+
ctx.prenorm = prenorm
|
582 |
+
ctx.x_dtype = x.dtype
|
583 |
+
ctx.linear_bias_is_none = linear_bias is None
|
584 |
+
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
585 |
+
|
586 |
+
@staticmethod
|
587 |
+
@contiguous
|
588 |
+
def backward(ctx, dout, *args):
|
589 |
+
x, o, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
590 |
+
dout = dout.reshape(-1, dout.shape[-1])
|
591 |
+
dy = F.linear(dout, linear_weight.t())
|
592 |
+
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
593 |
+
assert dy.shape == x.shape
|
594 |
+
if ctx.prenorm:
|
595 |
+
dresidual = args[0]
|
596 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
597 |
+
assert dresidual.shape == x.shape
|
598 |
+
else:
|
599 |
+
dresidual = None
|
600 |
+
dx, do, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd(
|
601 |
+
dy,
|
602 |
+
x,
|
603 |
+
o,
|
604 |
+
norm_weight,
|
605 |
+
norm_bias,
|
606 |
+
ctx.eps,
|
607 |
+
mean,
|
608 |
+
rstd,
|
609 |
+
dresidual=dresidual,
|
610 |
+
has_residual=ctx.has_residual,
|
611 |
+
is_rms_norm=ctx.is_rms_norm,
|
612 |
+
x_dtype=ctx.x_dtype,
|
613 |
+
recompute_output=True,
|
614 |
+
)
|
615 |
+
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
|
616 |
+
return (
|
617 |
+
dx.reshape(ctx.x_shape_og),
|
618 |
+
do.reshape(ctx.o_shape_og),
|
619 |
+
dnorm_weight,
|
620 |
+
dnorm_bias,
|
621 |
+
dlinear_weight,
|
622 |
+
dlinear_bias,
|
623 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
624 |
+
None,
|
625 |
+
None,
|
626 |
+
None,
|
627 |
+
None,
|
628 |
+
)
|
629 |
+
|
630 |
+
|
631 |
+
def layer_norm_swish_gate_fn(
|
632 |
+
x,
|
633 |
+
o,
|
634 |
+
weight,
|
635 |
+
bias,
|
636 |
+
residual=None,
|
637 |
+
prenorm=False,
|
638 |
+
residual_in_fp32=False,
|
639 |
+
eps=1e-6
|
640 |
+
):
|
641 |
+
return LayerNormSwishGateFn.apply(
|
642 |
+
x,
|
643 |
+
o,
|
644 |
+
weight,
|
645 |
+
bias,
|
646 |
+
residual,
|
647 |
+
eps,
|
648 |
+
prenorm,
|
649 |
+
residual_in_fp32,
|
650 |
+
False
|
651 |
+
)
|
652 |
+
|
653 |
+
|
654 |
+
def rms_norm_swish_gate_fn(
|
655 |
+
x,
|
656 |
+
o,
|
657 |
+
weight,
|
658 |
+
bias,
|
659 |
+
residual=None,
|
660 |
+
prenorm=False,
|
661 |
+
residual_in_fp32=False,
|
662 |
+
eps=1e-6
|
663 |
+
):
|
664 |
+
return LayerNormSwishGateFn.apply(
|
665 |
+
x,
|
666 |
+
o,
|
667 |
+
weight,
|
668 |
+
bias,
|
669 |
+
residual,
|
670 |
+
eps,
|
671 |
+
prenorm,
|
672 |
+
residual_in_fp32,
|
673 |
+
True
|
674 |
+
)
|
675 |
+
|
676 |
+
|
677 |
+
def layer_norm_swish_gate_linear_fn(
|
678 |
+
x,
|
679 |
+
o,
|
680 |
+
norm_weight,
|
681 |
+
norm_bias,
|
682 |
+
linear_weight,
|
683 |
+
linear_bias,
|
684 |
+
residual=None,
|
685 |
+
prenorm=False,
|
686 |
+
residual_in_fp32=False,
|
687 |
+
eps=1e-6
|
688 |
+
):
|
689 |
+
return LayerNormSwishGateLinearFn.apply(
|
690 |
+
x,
|
691 |
+
o,
|
692 |
+
norm_weight,
|
693 |
+
norm_bias,
|
694 |
+
linear_weight,
|
695 |
+
linear_bias,
|
696 |
+
residual,
|
697 |
+
eps,
|
698 |
+
prenorm,
|
699 |
+
residual_in_fp32,
|
700 |
+
False
|
701 |
+
)
|
702 |
+
|
703 |
+
|
704 |
+
def rms_norm_swish_gate_linear_fn(
|
705 |
+
x,
|
706 |
+
o,
|
707 |
+
norm_weight,
|
708 |
+
norm_bias,
|
709 |
+
linear_weight,
|
710 |
+
linear_bias,
|
711 |
+
residual=None,
|
712 |
+
prenorm=False,
|
713 |
+
residual_in_fp32=False,
|
714 |
+
eps=1e-6
|
715 |
+
):
|
716 |
+
return LayerNormSwishGateLinearFn.apply(
|
717 |
+
x,
|
718 |
+
o,
|
719 |
+
norm_weight,
|
720 |
+
norm_bias,
|
721 |
+
linear_weight,
|
722 |
+
linear_bias,
|
723 |
+
residual,
|
724 |
+
eps,
|
725 |
+
prenorm,
|
726 |
+
residual_in_fp32,
|
727 |
+
True
|
728 |
+
)
|
729 |
+
|
730 |
+
|
731 |
+
class FusedLayerNormSwishGate(nn.Module):
|
732 |
+
|
733 |
+
def __init__(
|
734 |
+
self,
|
735 |
+
hidden_size,
|
736 |
+
elementwise_affine: bool = True,
|
737 |
+
eps=1e-5
|
738 |
+
) -> FusedLayerNormSwishGate:
|
739 |
+
super().__init__()
|
740 |
+
|
741 |
+
self.hidden_size = hidden_size
|
742 |
+
self.elementwise_affine = elementwise_affine
|
743 |
+
self.eps = eps
|
744 |
+
|
745 |
+
if elementwise_affine:
|
746 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
747 |
+
else:
|
748 |
+
self.register_parameter("weight", None)
|
749 |
+
self.register_parameter("bias", None)
|
750 |
+
|
751 |
+
def __repr__(self) -> str:
|
752 |
+
s = f"{self.__class__.__name__}({self.hidden_size}"
|
753 |
+
if not self.elementwise_affine:
|
754 |
+
s += f", elementwise_affine={self.elementwise_affine}"
|
755 |
+
s += f", eps={self.eps}"
|
756 |
+
s += ")"
|
757 |
+
return s
|
758 |
+
|
759 |
+
def forward(self, x, o, residual=None, prenorm=False, residual_in_fp32=False):
|
760 |
+
return layer_norm_swish_gate_fn(
|
761 |
+
x,
|
762 |
+
o,
|
763 |
+
self.weight,
|
764 |
+
self.bias,
|
765 |
+
residual=residual,
|
766 |
+
eps=self.eps,
|
767 |
+
prenorm=prenorm,
|
768 |
+
residual_in_fp32=residual_in_fp32
|
769 |
+
)
|
770 |
+
|
771 |
+
|
772 |
+
class FusedRMSNormSwishGate(nn.Module):
|
773 |
+
|
774 |
+
def __init__(
|
775 |
+
self,
|
776 |
+
hidden_size,
|
777 |
+
elementwise_affine: bool = True,
|
778 |
+
eps=1e-5
|
779 |
+
) -> FusedRMSNormSwishGate:
|
780 |
+
super().__init__()
|
781 |
+
|
782 |
+
self.hidden_size = hidden_size
|
783 |
+
self.elementwise_affine = elementwise_affine
|
784 |
+
self.eps = eps
|
785 |
+
|
786 |
+
if elementwise_affine:
|
787 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
788 |
+
else:
|
789 |
+
self.register_parameter("weight", None)
|
790 |
+
self.register_parameter("bias", None)
|
791 |
+
|
792 |
+
def __repr__(self) -> str:
|
793 |
+
s = f"{self.__class__.__name__}({self.hidden_size}"
|
794 |
+
if not self.elementwise_affine:
|
795 |
+
s += f", elementwise_affine={self.elementwise_affine}"
|
796 |
+
s += f", eps={self.eps}"
|
797 |
+
s += ")"
|
798 |
+
return s
|
799 |
+
|
800 |
+
def forward(self, x, o, residual=None, prenorm=False, residual_in_fp32=False):
|
801 |
+
return rms_norm_swish_gate_fn(
|
802 |
+
x,
|
803 |
+
o,
|
804 |
+
self.weight,
|
805 |
+
self.bias,
|
806 |
+
residual=residual,
|
807 |
+
eps=self.eps,
|
808 |
+
prenorm=prenorm,
|
809 |
+
residual_in_fp32=residual_in_fp32
|
810 |
+
)
|
811 |
+
|
812 |
+
|
813 |
+
class FusedLayerNormSwishGateLinear(nn.Module):
|
814 |
+
|
815 |
+
def __init__(
|
816 |
+
self,
|
817 |
+
hidden_size,
|
818 |
+
elementwise_affine: bool = True,
|
819 |
+
eps=1e-5
|
820 |
+
) -> FusedLayerNormSwishGateLinear:
|
821 |
+
super().__init__()
|
822 |
+
|
823 |
+
self.hidden_size = hidden_size
|
824 |
+
self.elementwise_affine = elementwise_affine
|
825 |
+
self.eps = eps
|
826 |
+
|
827 |
+
if elementwise_affine:
|
828 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
829 |
+
else:
|
830 |
+
self.register_parameter("weight", None)
|
831 |
+
self.register_parameter("bias", None)
|
832 |
+
|
833 |
+
def __repr__(self) -> str:
|
834 |
+
s = f"{self.__class__.__name__}({self.hidden_size}"
|
835 |
+
if not self.elementwise_affine:
|
836 |
+
s += f", elementwise_affine={self.elementwise_affine}"
|
837 |
+
s += f", eps={self.eps}"
|
838 |
+
s += ")"
|
839 |
+
return s
|
840 |
+
|
841 |
+
def forward(self, x, o, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
|
842 |
+
return layer_norm_swish_gate_linear_fn(
|
843 |
+
x,
|
844 |
+
o,
|
845 |
+
self.weight,
|
846 |
+
self.bias,
|
847 |
+
weight,
|
848 |
+
bias,
|
849 |
+
residual=residual,
|
850 |
+
eps=self.eps,
|
851 |
+
prenorm=prenorm,
|
852 |
+
residual_in_fp32=residual_in_fp32
|
853 |
+
)
|
854 |
+
|
855 |
+
|
856 |
+
class FusedRMSNormSwishGateLinear(nn.Module):
|
857 |
+
|
858 |
+
def __init__(
|
859 |
+
self,
|
860 |
+
hidden_size,
|
861 |
+
elementwise_affine: bool = True,
|
862 |
+
eps=1e-5
|
863 |
+
) -> FusedRMSNormSwishGateLinear:
|
864 |
+
super().__init__()
|
865 |
+
|
866 |
+
self.hidden_size = hidden_size
|
867 |
+
self.elementwise_affine = elementwise_affine
|
868 |
+
self.eps = eps
|
869 |
+
|
870 |
+
if elementwise_affine:
|
871 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
872 |
+
else:
|
873 |
+
self.register_parameter("weight", None)
|
874 |
+
self.register_parameter("bias", None)
|
875 |
+
|
876 |
+
def __repr__(self) -> str:
|
877 |
+
s = f"{self.__class__.__name__}({self.hidden_size}"
|
878 |
+
if not self.elementwise_affine:
|
879 |
+
s += f", elementwise_affine={self.elementwise_affine}"
|
880 |
+
s += f", eps={self.eps}"
|
881 |
+
s += ")"
|
882 |
+
return s
|
883 |
+
|
884 |
+
def forward(self, x, o, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
|
885 |
+
return rms_norm_swish_gate_linear_fn(
|
886 |
+
x,
|
887 |
+
o,
|
888 |
+
self.weight,
|
889 |
+
self.bias,
|
890 |
+
weight,
|
891 |
+
bias,
|
892 |
+
residual=residual,
|
893 |
+
eps=self.eps,
|
894 |
+
prenorm=prenorm,
|
895 |
+
residual_in_fp32=residual_in_fp32
|
896 |
+
)
|