|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import queue |
|
import threading |
|
import warnings |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import (BaseModelOutputWithPast, |
|
CausalLMOutputWithPast) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import (add_start_docstrings, |
|
add_start_docstrings_to_model_forward, logging, |
|
replace_return_docstrings) |
|
from fused_norm_gate import FusedRMSNormSwishGate |
|
|
|
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined |
|
from mamba_ssm.ops.triton.selective_state_update import selective_state_update |
|
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update |
|
|
|
|
|
try: |
|
from transformers.generation.streamers import BaseStreamer |
|
except: |
|
BaseStreamer = None |
|
|
|
from .configuration_mmMamba import mmMambaConfig |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = 'mmMambaConfig' |
|
|
|
flash_attn_func, flash_attn_varlen_func = None, None |
|
pad_input, index_first_axis, unpad_input = None, None, None |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func |
|
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis as _index_first_axis |
|
from flash_attn.bert_padding import pad_input as _pad_input |
|
from flash_attn.bert_padding import unpad_input as _unpad_input |
|
|
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
has_flash_attn = True |
|
except: |
|
has_flash_attn = False |
|
|
|
try: |
|
from flash_attn import flash_attn_with_kvcache |
|
except ImportError: |
|
flash_attn_with_kvcache = None |
|
|
|
try: |
|
from flash_attn.layers.rotary import RotaryEmbedding |
|
except ImportError: |
|
RotaryEmbedding = None |
|
|
|
import torch.nn.functional as F |
|
|
|
def _update_kv_cache(kv, inference_params, layer_idx): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
|
|
num_heads, head_dim = kv.shape[-2:] |
|
assert layer_idx in inference_params.key_value_memory_dict |
|
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx] |
|
|
|
batch_start = inference_params.batch_size_offset |
|
batch_end = batch_start + kv.shape[0] |
|
sequence_start = inference_params.seqlen_offset |
|
sequence_end = sequence_start + kv.shape[1] |
|
assert batch_end <= kv_cache.shape[0] |
|
assert sequence_end <= kv_cache.shape[1] |
|
assert kv_cache is not None |
|
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv |
|
return kv_cache[batch_start:batch_end, :sequence_end, ...] |
|
|
|
def _import_flash_attn(): |
|
global flash_attn_func, flash_attn_varlen_func |
|
global pad_input, index_first_axis, unpad_input |
|
try: |
|
from flash_attn import flash_attn_func as _flash_attn_func |
|
from flash_attn import \ |
|
flash_attn_varlen_func as _flash_attn_varlen_func |
|
from flash_attn.bert_padding import \ |
|
index_first_axis as _index_first_axis |
|
from flash_attn.bert_padding import pad_input as _pad_input |
|
from flash_attn.bert_padding import unpad_input as _unpad_input |
|
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func |
|
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input |
|
except ImportError: |
|
raise ImportError('flash_attn is not installed.') |
|
|
|
|
|
|
|
class mmMambaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
mmMambaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
|
|
class mmMambaRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
|
|
class mmMambaLinearScalingRotaryEmbedding(mmMambaRotaryEmbedding): |
|
"""mmMambaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class mmMambaDynamicNTKScalingRotaryEmbedding(mmMambaRotaryEmbedding): |
|
"""mmMambaRotaryEmbedding extended with Dynamic NTK scaling. |
|
Credits to the Reddit users /u/bloc97 and /u/emozilla. |
|
""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer('inv_freq', inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum('i,j->ij', t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False) |
|
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
|
|
class mmMambaMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x)) |
|
|
|
return down_proj |
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
def repeat_kv2(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :].expand(batch, num_key_value_heads, n_rep, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, head_dim) |
|
|
|
|
|
class MHA_LM(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: mmMambaConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.is_causal = True |
|
self.rotary_emb_dim = self.head_dim |
|
self.softmax_scale = None |
|
self.causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.wqkv = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim, |
|
bias=False, |
|
) |
|
|
|
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
self.rotary_emb = RotaryEmbedding( |
|
self.head_dim, |
|
base=self.config.rope_theta, |
|
interleaved=False, |
|
device=self.wo.weight.device, |
|
) |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def _update_kv_cache(self, kv, inference_params): |
|
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)""" |
|
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor" |
|
return _update_kv_cache(kv, inference_params, self.layer_idx) |
|
|
|
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params): |
|
""" |
|
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention. |
|
q: (batch_size, seqlen_q, nheads, head_dim) |
|
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim) |
|
""" |
|
assert inference_params is not None and inference_params.seqlen_offset > 0 |
|
if self.rotary_emb_dim > 0: |
|
self.rotary_emb._update_cos_sin_cache( |
|
inference_params.max_seqlen, device=q.device, dtype=q.dtype |
|
) |
|
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached |
|
else: |
|
rotary_cos, rotary_sin = None, None |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
assert flash_attn_with_kvcache is not None, "flash_attn must be installed" |
|
context = flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
rotary_cos=rotary_cos, |
|
rotary_sin=rotary_sin, |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False, |
|
) |
|
return context |
|
|
|
def _update_kvcache_attention(self, q, kv, inference_params): |
|
"""Write kv to inference_params, then do attention""" |
|
if ( |
|
inference_params.seqlen_offset == 0 |
|
or flash_attn_with_kvcache is None |
|
): |
|
|
|
kv = self._update_kv_cache(kv, inference_params) |
|
k, v = kv.unbind(dim=-3) |
|
|
|
|
|
attn_output = flash_attn_func( |
|
q, k, v, 0.0, softmax_scale=None, causal=self.causal |
|
) |
|
return attn_output |
|
else: |
|
batch = q.shape[0] |
|
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx] |
|
kv_cache = kv_cache[:batch] |
|
cache_seqlens = ( |
|
inference_params.lengths_per_sample[:batch] |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
return flash_attn_with_kvcache( |
|
q, |
|
kv_cache[:, :, 0], |
|
kv_cache[:, :, 1], |
|
kv[:, :, 0], |
|
kv[:, :, 1], |
|
cache_seqlens=cache_seqlens, |
|
softmax_scale=self.softmax_scale, |
|
causal=self.causal, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict: |
|
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache( |
|
hidden_states.shape[0], inference_params.max_seqlen, dtype=hidden_states.dtype |
|
) |
|
seqlen_offset = ( |
|
0 |
|
if inference_params is None |
|
else ( |
|
inference_params.lengths_per_sample |
|
if inference_params.lengths_per_sample is not None |
|
else inference_params.seqlen_offset |
|
) |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None |
|
|
|
qkv = self.wqkv(hidden_states) |
|
qkv = rearrange( |
|
qkv, |
|
"b q (h gs d) -> b q h gs d", |
|
gs=2 + self.num_key_value_groups, |
|
d=self.head_dim, |
|
) |
|
|
|
q = qkv[..., : self.num_key_value_groups, :] |
|
q = rearrange(q, "b q h gs d -> b q (h gs) d") |
|
kv = qkv[..., self.num_key_value_groups:, :].transpose(2,3) |
|
|
|
if ( |
|
inference_params is None |
|
or inference_params.seqlen_offset == 0 |
|
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0) |
|
): |
|
if self.rotary_emb_dim > 0: |
|
q, kv = self.rotary_emb( |
|
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen |
|
) |
|
if inference_params is None: |
|
k, v = kv.unbind(dim=-3) |
|
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads) |
|
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads) |
|
context = F.scaled_dot_product_attention( |
|
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=None |
|
).transpose(1, 2) |
|
else: |
|
context = self._update_kvcache_attention(q, kv, inference_params) |
|
else: |
|
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params) |
|
context = rearrange(context, "... h d -> ... (h d)") |
|
out = self.wo(context) |
|
return out |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None): |
|
dtype = self.wo.weight.dtype if dtype is None else dtype |
|
device = self.wo.weight.device |
|
kv_cache = torch.empty( |
|
batch_size, max_seqlen, 2, self.num_key_value_heads, self.head_dim, dtype=dtype, device=device, |
|
) |
|
return kv_cache, None |
|
|
|
|
|
class Mamba2_LM(nn.Module): |
|
""" |
|
LoLCATs attention implementation initialized from a |
|
`LlamaAttention` or `MistralAttention` object (base_attn) |
|
|
|
Most of the arguments are directly tied to argparse args |
|
- For now we don't support padding. |
|
""" |
|
def __init__(self, config: mmMambaConfig, layer_idx: Optional[int] = None, |
|
elementwise_affine: Optional[bool] = True, |
|
norm_eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.layer_idx = layer_idx |
|
self.bias = False |
|
self.chunk_size = 128 |
|
conv_bias = True |
|
self.conv_bias = conv_bias |
|
self.d_conv = 2 |
|
self.activation="silu" |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
|
|
self.wvkqgdt = nn.Linear( |
|
self.hidden_size, |
|
(self.num_heads + 2 * self.num_key_value_heads + self.num_heads) * self.head_dim + self.num_heads, |
|
bias=self.bias |
|
) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) |
|
|
|
self.device = self.wvkqgdt.weight.device |
|
self.dtype = self.wvkqgdt.weight.dtype |
|
|
|
conv_dim = self.num_heads * self.head_dim + 2 * self.num_key_value_heads * self.head_dim |
|
|
|
self.conv1d = nn.Conv1d( |
|
in_channels=conv_dim, |
|
out_channels=conv_dim, |
|
bias=self.conv_bias, |
|
kernel_size=self.d_conv, |
|
groups=conv_dim, |
|
padding=self.d_conv - 1, |
|
device=self.device, |
|
dtype=self.dtype |
|
) |
|
with torch.no_grad(): |
|
self.conv1d.weight.zero_() |
|
self.conv1d.weight[:, 0, 1] = 1 |
|
self.conv1d.bias.zero_() |
|
|
|
|
|
if self.activation == "identity": |
|
self.act = nn.Identity() |
|
elif self.activation in ["silu", "swish"]: |
|
self.act = nn.SiLU() |
|
else: |
|
raise ValueError(f"Unknown activation {self.activation}") |
|
|
|
self.g_norm_swish_gate = FusedRMSNormSwishGate(hidden_size=self.head_dim, elementwise_affine=elementwise_affine, eps=norm_eps).to(self.dtype).to(self.device) |
|
|
|
dt = torch.exp( |
|
torch.rand(self.num_heads, dtype=self.dtype, device=self.device) * (math.log(0.1) - math.log(0.001)) |
|
+ math.log(0.001) |
|
) |
|
dt = torch.clamp(dt, min=0.001) |
|
|
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
self.dt_bias = nn.Parameter(inv_dt) |
|
self.dt_bias._no_weight_decay = True |
|
|
|
A_log_bias = torch.zeros(self.num_heads, dtype=self.dtype, device=self.device) |
|
self.A_log_bias = nn.Parameter(A_log_bias) |
|
self.A_log_bias._no_weight_decay = True |
|
|
|
def forward(self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = True, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
hidden_states = hidden_states.to(self.dtype) |
|
vkqgdt = self.wvkqgdt(hidden_states) |
|
vkq, g, dt = torch.split( |
|
vkqgdt, |
|
[ |
|
(2*self.num_key_value_heads+self.num_heads) * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
self.num_heads, |
|
], |
|
dim=2, |
|
) |
|
batch, seqlen, _ = hidden_states.shape |
|
conv_state, ssm_state = None, None |
|
if inference_params is not None: |
|
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch) |
|
|
|
if use_cache and inference_params.seqlen_offset==0: |
|
vkq, new_conv_states = causal_conv1d_fn( |
|
vkq.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
initial_states=None, |
|
return_final_states=True, |
|
activation=None if self.activation == "identity" else self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads) |
|
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2) |
|
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2) |
|
|
|
A = -torch.exp(self.A_log_bias.float()) |
|
|
|
y, new_ssm_states = mamba_chunk_scan_combined( |
|
x = v, |
|
|
|
dt=dt, |
|
dt_softplus=True, |
|
A=A, |
|
B=k, |
|
C=q, |
|
chunk_size=self.chunk_size, |
|
dt_bias=self.dt_bias, |
|
initial_states=None, |
|
return_final_states=True, |
|
) |
|
|
|
conv_state.copy_(new_conv_states) |
|
ssm_state.copy_(new_ssm_states) |
|
|
|
elif use_cache and inference_params.seqlen_offset>0: |
|
|
|
vkq = causal_conv1d_update( |
|
vkq.transpose(1, 2).squeeze(-1), |
|
conv_state, |
|
self.conv1d.weight.squeeze(1), |
|
self.conv1d.bias, |
|
self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) -> b h n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) -> b h n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) -> b h n", h=self.num_heads) |
|
k = repeat_kv2(k, self.num_key_value_groups) |
|
v = repeat_kv2(v, self.num_key_value_groups) |
|
|
|
dt = dt.transpose(1, 2).squeeze(-1) |
|
dt = dt[:, :, None].expand(-1, -1, self.head_dim) |
|
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim) |
|
A = -torch.exp(self.A_log_bias.float()) |
|
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.head_dim).to(dtype=torch.float32) |
|
D = torch.zeros((self.num_heads, self.head_dim), dtype=A.dtype, device=A.device) |
|
|
|
y = selective_state_update( |
|
ssm_state, |
|
v, |
|
dt, |
|
A=A, |
|
B=k, |
|
C=q, |
|
D=D, |
|
dt_bias=dt_bias, |
|
dt_softplus=True, |
|
) |
|
|
|
else: |
|
vkq = causal_conv1d_fn( |
|
vkq.transpose(1, 2), |
|
rearrange(self.conv1d.weight, "d 1 w -> d w"), |
|
self.conv1d.bias, |
|
initial_states=None, |
|
return_final_states=False, |
|
activation=None if self.activation == "identity" else self.activation, |
|
) |
|
|
|
v, k, q = torch.split( |
|
vkq, |
|
[ |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_key_value_heads * self.head_dim, |
|
self.num_heads * self.head_dim, |
|
], |
|
dim=1, |
|
) |
|
|
|
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads) |
|
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads) |
|
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2) |
|
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2) |
|
|
|
A = -torch.exp(self.A_log_bias.float()) |
|
|
|
y = mamba_chunk_scan_combined( |
|
x = v, |
|
dt=dt, |
|
dt_softplus=True, |
|
A=A, |
|
B=k, |
|
C=q, |
|
chunk_size=self.chunk_size, |
|
dt_bias=self.dt_bias, |
|
initial_states=None, |
|
return_final_states=False, |
|
) |
|
|
|
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads) |
|
y_true = self.g_norm_swish_gate(y, g) |
|
y_true = y_true.view(batch, seqlen, self.hidden_size) |
|
y_true = self.o_proj(y_true) |
|
|
|
return y_true |
|
|
|
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False): |
|
device = self.conv1d.weight.device |
|
dtype = self.conv1d.weight.dtype |
|
assert self.layer_idx is not None |
|
if self.layer_idx not in inference_params.key_value_memory_dict: |
|
batch_shape = (batch_size,) |
|
conv_state = torch.zeros( |
|
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype |
|
) |
|
ssm_state = torch.zeros( |
|
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype |
|
) |
|
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state) |
|
else: |
|
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx] |
|
|
|
if initialize_states: |
|
conv_state.zero_() |
|
ssm_state.zero_() |
|
return conv_state, ssm_state |
|
|
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
device = self.conv1d.weight.device |
|
dtype = self.conv1d.weight.dtype |
|
conv_state = torch.zeros( |
|
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype |
|
) |
|
|
|
ssm_state = torch.zeros( |
|
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype |
|
) |
|
return conv_state, ssm_state |
|
|
|
|
|
mmMamba_ATTENTION_CLASSES = { |
|
'mha': MHA_LM, |
|
"mamba2":Mamba2_LM |
|
} |
|
|
|
|
|
|
|
class mmMambaDecoderLayer(nn.Module): |
|
def __init__(self, config: mmMambaConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.layer_idx = layer_idx |
|
self.attention = mmMamba_ATTENTION_CLASSES[config.layers_block_type[layer_idx-8]](config=config, layer_idx=layer_idx) |
|
|
|
self.feed_forward = mmMambaMLP(config) |
|
self.attention_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.ffn_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
inference_params = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = True, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.attention_norm(hidden_states) |
|
|
|
|
|
hidden_states = self.attention( |
|
hidden_states=hidden_states, |
|
inference_params=inference_params, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.ffn_norm(hidden_states) |
|
hidden_states = self.feed_forward(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += self_attn_weights |
|
|
|
|
|
|
|
return outputs |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
return self.attention.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) |
|
|
|
|
|
mmMamba_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
Parameters: |
|
config ([`mmMambaConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
'The bare mmMamba Model outputting raw hidden-states without any specific head on top.', |
|
mmMamba_START_DOCSTRING, |
|
) |
|
class mmMambaPreTrainedModel(PreTrainedModel): |
|
config_class = mmMambaConfig |
|
base_model_prefix = 'model' |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ['mmMambaDecoderLayer'] |
|
_skip_keys_device_placement = 'past_key_values' |
|
_supports_flash_attn_2 = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
mmMamba_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
[What are input IDs?](../glossary#input-ids) |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
|
|
@add_start_docstrings( |
|
'The bare mmMamba Model outputting raw hidden-states without any specific head on top.', |
|
mmMamba_START_DOCSTRING, |
|
) |
|
class mmMambaModel(mmMambaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`mmMambaDecoderLayer`] |
|
Args: |
|
config: mmMambaConfig |
|
""" |
|
|
|
_auto_class = 'AutoModel' |
|
|
|
def __init__(self, config: mmMambaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.config = config |
|
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
self.layers = nn.ModuleList([mmMambaDecoderLayer(config, (layer_idx+8)) for layer_idx in range(config.num_hidden_layers)]) |
|
self.norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.tok_embeddings = value |
|
|
|
@add_start_docstrings_to_model_forward(mmMamba_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inference_params=None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = True, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if self.config.attn_implementation == 'flash_attention_2': |
|
_import_flash_attn() |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError('You have to specify either input_ids or inputs_embeds') |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.tok_embeddings(input_ids) |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...' |
|
) |
|
use_cache = False |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, output_attentions, None) |
|
|
|
return custom_forward |
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(decoder_layer), |
|
hidden_states, |
|
inference_params, |
|
None, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
inference_params=inference_params, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
all_self_attns += layer_outputs[1] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
return { |
|
layer.layer_idx: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) |
|
for layer in self.layers |
|
} |
|
|
|
|
|
class mmMambaForCausalLM(mmMambaPreTrainedModel): |
|
_auto_class = 'AutoModelForCausalLM' |
|
|
|
_tied_weights_keys = ['output.weight'] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = mmMambaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.tok_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.tok_embeddings = value |
|
|
|
def get_output_embeddings(self): |
|
return self.output |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.output = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@add_start_docstrings_to_model_forward(mmMamba_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
inference_params=None, |
|
num_last_tokens=0, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = True, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
Returns: |
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer, mmMambaForCausalLM |
|
>>> model = mmMambaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
>>> prompt = "Hey, are you conscious? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." |
|
```""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
inference_params=inference_params, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
|
|
if num_last_tokens > 0: |
|
hidden_states = hidden_states[:, -num_last_tokens:] |
|
|
|
logits = self.output(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
output = CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
output['logits'] = output['logits'].to(device) |
|
return output |
|
|
|
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs): |
|
return self.model.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs) |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|
|
|
|
@torch.no_grad() |
|
def stream_chat( |
|
self, |
|
tokenizer, |
|
query: str, |
|
history: List[Tuple[str, str]] = [], |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
temperature: float = 0.8, |
|
top_p: float = 0.8, |
|
**kwargs, |
|
): |
|
""" |
|
Return a generator in format: (response, history) |
|
Eg. |
|
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')]) |
|
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')]) |
|
""" |
|
if BaseStreamer is None: |
|
raise ModuleNotFoundError( |
|
'The version of `transformers` is too low. Please make sure ' |
|
'that you have installed `transformers>=4.28.0`.' |
|
) |
|
|
|
response_queue = queue.Queue(maxsize=20) |
|
|
|
class ChatStreamer(BaseStreamer): |
|
def __init__(self, tokenizer) -> None: |
|
super().__init__() |
|
self.tokenizer = tokenizer |
|
self.queue = response_queue |
|
self.query = query |
|
self.history = history |
|
self.response = '' |
|
self.cache = [] |
|
self.received_inputs = False |
|
self.queue.put((self.response, history + [(self.query, self.response)])) |
|
|
|
def put(self, value): |
|
if len(value.shape) > 1 and value.shape[0] > 1: |
|
raise ValueError('ChatStreamer only supports batch size 1') |
|
elif len(value.shape) > 1: |
|
value = value[0] |
|
|
|
if not self.received_inputs: |
|
|
|
self.received_inputs = True |
|
return |
|
|
|
self.cache.extend(value.tolist()) |
|
token = self.tokenizer.decode(self.cache, skip_special_tokens=True) |
|
if token.strip() != '<|im_end|>': |
|
self.response = self.response + token |
|
history = self.history + [(self.query, self.response)] |
|
self.queue.put((self.response, history)) |
|
self.cache = [] |
|
else: |
|
self.end() |
|
|
|
def end(self): |
|
self.queue.put(None) |
|
|
|
def stream_producer(): |
|
return self.chat( |
|
tokenizer=tokenizer, |
|
query=query, |
|
streamer=ChatStreamer(tokenizer=tokenizer), |
|
history=history, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
|
|
def consumer(): |
|
producer = threading.Thread(target=stream_producer) |
|
producer.start() |
|
while True: |
|
res = response_queue.get() |
|
if res is None: |
|
return |
|
yield res |
|
|
|
return consumer() |
|
|
|
|