mmMamba-hybrid / modeling_mmMamba.py
HongyuanTao's picture
Update modeling_mmMamba.py
f3e2a30 verified
# Copyright (c) The mmMamba team and The HuggingFace Inc. team. All rights reserved.
#
# This code is based on transformers/src/transformers/models/llama/modeling_llama.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import queue
import threading
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (add_start_docstrings,
add_start_docstrings_to_model_forward, logging,
replace_return_docstrings)
from fused_norm_gate import FusedRMSNormSwishGate
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
try:
from transformers.generation.streamers import BaseStreamer
except: # noqa # pylint: disable=bare-except
BaseStreamer = None
from .configuration_mmMamba import mmMambaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = 'mmMambaConfig'
flash_attn_func, flash_attn_varlen_func = None, None
pad_input, index_first_axis, unpad_input = None, None, None
try:
from flash_attn import flash_attn_func as _flash_attn_func
from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis as _index_first_axis
from flash_attn.bert_padding import pad_input as _pad_input
from flash_attn.bert_padding import unpad_input as _unpad_input
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
has_flash_attn = True
except:
has_flash_attn = False
try:
from flash_attn import flash_attn_with_kvcache
except ImportError:
flash_attn_with_kvcache = None
try:
from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
RotaryEmbedding = None
import torch.nn.functional as F
def _update_kv_cache(kv, inference_params, layer_idx):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
# Pre-allocate memory for key-values for inference.
num_heads, head_dim = kv.shape[-2:]
assert layer_idx in inference_params.key_value_memory_dict
kv_cache, _ = inference_params.key_value_memory_dict[layer_idx]
# Adjust key and value for inference
batch_start = inference_params.batch_size_offset
batch_end = batch_start + kv.shape[0]
sequence_start = inference_params.seqlen_offset
sequence_end = sequence_start + kv.shape[1]
assert batch_end <= kv_cache.shape[0]
assert sequence_end <= kv_cache.shape[1]
assert kv_cache is not None
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
return kv_cache[batch_start:batch_end, :sequence_end, ...]
def _import_flash_attn():
global flash_attn_func, flash_attn_varlen_func
global pad_input, index_first_axis, unpad_input
try:
from flash_attn import flash_attn_func as _flash_attn_func
from flash_attn import \
flash_attn_varlen_func as _flash_attn_varlen_func
from flash_attn.bert_padding import \
index_first_axis as _index_first_axis
from flash_attn.bert_padding import pad_input as _pad_input
from flash_attn.bert_padding import unpad_input as _unpad_input
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
except ImportError:
raise ImportError('flash_attn is not installed.')
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->mmMamba
class mmMambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
mmMambaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
# Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->mmMamba
class mmMambaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->mmMamba
class mmMambaLinearScalingRotaryEmbedding(mmMambaRotaryEmbedding):
"""mmMambaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
t = t / self.scaling_factor
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->mmMamba
class mmMambaDynamicNTKScalingRotaryEmbedding(mmMambaRotaryEmbedding):
"""mmMambaRotaryEmbedding extended with Dynamic NTK scaling.
Credits to the Reddit users /u/bloc97 and /u/emozilla.
"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
self.scaling_factor = scaling_factor
super().__init__(dim, max_position_embeddings, base, device)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
if seq_len > self.max_position_embeddings:
base = self.base * (
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
) ** (self.dim / (self.dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer('inv_freq', inv_freq, persistent=False)
t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
class mmMambaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
return down_proj
# Copied from transformers.model.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def repeat_kv2(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :].expand(batch, num_key_value_heads, n_rep, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, head_dim)
class MHA_LM(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: mmMambaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx#-------------------------
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.is_causal = True
self.rotary_emb_dim = self.head_dim
self.softmax_scale = None
self.causal = True
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.wqkv = nn.Linear(
self.hidden_size,
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
bias=False,
)
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.rotary_emb = RotaryEmbedding(
self.head_dim,
base=self.config.rope_theta,
interleaved=False,
device=self.wo.weight.device,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _update_kv_cache(self, kv, inference_params):
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
return _update_kv_cache(kv, inference_params, self.layer_idx)
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
"""
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
q: (batch_size, seqlen_q, nheads, head_dim)
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
"""
assert inference_params is not None and inference_params.seqlen_offset > 0
if self.rotary_emb_dim > 0:
self.rotary_emb._update_cos_sin_cache(
inference_params.max_seqlen, device=q.device, dtype=q.dtype
)
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
else:
rotary_cos, rotary_sin = None, None
batch = q.shape[0]
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
kv_cache = kv_cache[:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
assert flash_attn_with_kvcache is not None, "flash_attn must be installed"
context = flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
rotary_cos=rotary_cos,
rotary_sin=rotary_sin,
cache_seqlens=cache_seqlens,
softmax_scale=self.softmax_scale,
causal=self.causal,
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
)
return context
def _update_kvcache_attention(self, q, kv, inference_params):
"""Write kv to inference_params, then do attention"""
if (
inference_params.seqlen_offset == 0
or flash_attn_with_kvcache is None
):
# TODO: this only uses seqlen_offset and not lengths_per_sample.
kv = self._update_kv_cache(kv, inference_params)
k, v = kv.unbind(dim=-3)
#k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads)
#v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads)
attn_output = flash_attn_func(
q, k, v, 0.0, softmax_scale=None, causal=self.causal
)
return attn_output
else:
batch = q.shape[0]
kv_cache, _ = inference_params.key_value_memory_dict[self.layer_idx]
kv_cache = kv_cache[:batch]
cache_seqlens = (
inference_params.lengths_per_sample[:batch]
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
return flash_attn_with_kvcache(
q,
kv_cache[:, :, 0],
kv_cache[:, :, 1],
kv[:, :, 0],
kv[:, :, 1],
cache_seqlens=cache_seqlens,
softmax_scale=self.softmax_scale,
causal=self.causal,
)
def forward(
self,
hidden_states: torch.Tensor,
inference_params = None,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,#------------------------------------------------------------------------
use_cache: bool = False,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if inference_params is not None and self.layer_idx not in inference_params.key_value_memory_dict:
inference_params.key_value_memory_dict[self.layer_idx] = self.allocate_inference_cache(
hidden_states.shape[0], inference_params.max_seqlen, dtype=hidden_states.dtype
)
seqlen_offset = (
0
if inference_params is None
else (
inference_params.lengths_per_sample
if inference_params.lengths_per_sample is not None
else inference_params.seqlen_offset
)
)
bsz, q_len, _ = hidden_states.size()
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
qkv = self.wqkv(hidden_states)
qkv = rearrange(
qkv,
"b q (h gs d) -> b q h gs d",
gs=2 + self.num_key_value_groups,
d=self.head_dim,
)
q = qkv[..., : self.num_key_value_groups, :]
q = rearrange(q, "b q h gs d -> b q (h gs) d")
kv = qkv[..., self.num_key_value_groups:, :].transpose(2,3)
if (
inference_params is None
or inference_params.seqlen_offset == 0
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
):
if self.rotary_emb_dim > 0:
q, kv = self.rotary_emb(
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
)
if inference_params is None:
k, v = kv.unbind(dim=-3)
k = torch.repeat_interleave(k, dim=2, repeats=self.num_heads // self.num_key_value_heads)
v = torch.repeat_interleave(v, dim=2, repeats=self.num_heads // self.num_key_value_heads)
context = F.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True, scale=None
).transpose(1, 2)
else:
context = self._update_kvcache_attention(q, kv, inference_params)
else:
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
context = rearrange(context, "... h d -> ... (h d)")
out = self.wo(context)
return out
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
dtype = self.wo.weight.dtype if dtype is None else dtype
device = self.wo.weight.device
kv_cache = torch.empty(
batch_size, max_seqlen, 2, self.num_key_value_heads, self.head_dim, dtype=dtype, device=device,
)
return kv_cache, None
class Mamba2_LM(nn.Module):
"""
LoLCATs attention implementation initialized from a
`LlamaAttention` or `MistralAttention` object (base_attn)
Most of the arguments are directly tied to argparse args
- For now we don't support padding.
"""
def __init__(self, config: mmMambaConfig, layer_idx: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.layer_idx = layer_idx
self.bias = False
self.chunk_size = 128
conv_bias = True
self.conv_bias = conv_bias
self.d_conv = 2
self.activation="silu"
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.wvkqgdt = nn.Linear(
self.hidden_size,
(self.num_heads + 2 * self.num_key_value_heads + self.num_heads) * self.head_dim + self.num_heads,
bias=self.bias
)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.device = self.wvkqgdt.weight.device
self.dtype = self.wvkqgdt.weight.dtype
conv_dim = self.num_heads * self.head_dim + 2 * self.num_key_value_heads * self.head_dim
self.conv1d = nn.Conv1d(
in_channels=conv_dim,
out_channels=conv_dim,
bias=self.conv_bias,
kernel_size=self.d_conv,
groups=conv_dim,
padding=self.d_conv - 1,
device=self.device,
dtype=self.dtype
)
with torch.no_grad():
self.conv1d.weight.zero_()
self.conv1d.weight[:, 0, 1] = 1
self.conv1d.bias.zero_()
# Activation after conv
if self.activation == "identity":
self.act = nn.Identity()
elif self.activation in ["silu", "swish"]:
self.act = nn.SiLU()
else:
raise ValueError(f"Unknown activation {self.activation}")
self.g_norm_swish_gate = FusedRMSNormSwishGate(hidden_size=self.head_dim, elementwise_affine=elementwise_affine, eps=norm_eps).to(self.dtype).to(self.device)
dt = torch.exp(
torch.rand(self.num_heads, dtype=self.dtype, device=self.device) * (math.log(0.1) - math.log(0.001))
+ math.log(0.001)
)
dt = torch.clamp(dt, min=0.001)
# Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
self.dt_bias = nn.Parameter(inv_dt)
self.dt_bias._no_weight_decay = True
A_log_bias = torch.zeros(self.num_heads, dtype=self.dtype, device=self.device)
self.A_log_bias = nn.Parameter(A_log_bias)
self.A_log_bias._no_weight_decay = True
def forward(self,
hidden_states: torch.Tensor,
inference_params = None,
output_attentions: bool = False,
use_cache: bool = True,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
hidden_states = hidden_states.to(self.dtype)
vkqgdt = self.wvkqgdt(hidden_states)
vkq, g, dt = torch.split(
vkqgdt,
[
(2*self.num_key_value_heads+self.num_heads) * self.head_dim,
self.num_heads * self.head_dim,
self.num_heads,
],
dim=2,
)
batch, seqlen, _ = hidden_states.shape
conv_state, ssm_state = None, None
if inference_params is not None:
conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
if use_cache and inference_params.seqlen_offset==0:
vkq, new_conv_states = causal_conv1d_fn(
vkq.transpose(1, 2),
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
initial_states=None,
return_final_states=True,
activation=None if self.activation == "identity" else self.activation,
)
v, k, q = torch.split(
vkq,
[
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
self.num_heads * self.head_dim,
],
dim=1,
)
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads)
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads)
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads)
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2)
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2)
A = -torch.exp(self.A_log_bias.float())
y, new_ssm_states = mamba_chunk_scan_combined(
x = v,
#x = v / F.softplus(A_log).to(v.dtype).unsqueeze(-1),
dt=dt,
dt_softplus=True,
A=A,
B=k,
C=q,
chunk_size=self.chunk_size,
dt_bias=self.dt_bias,
initial_states=None, # currently not supported by mamba_ssm.utils.generation
return_final_states=True,
)
conv_state.copy_(new_conv_states)
ssm_state.copy_(new_ssm_states)
elif use_cache and inference_params.seqlen_offset>0:
vkq = causal_conv1d_update(
vkq.transpose(1, 2).squeeze(-1),
conv_state,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
v, k, q = torch.split(
vkq,
[
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
self.num_heads * self.head_dim,
],
dim=1,
)
v = rearrange(v, "b (h n) -> b h n", h=self.num_key_value_heads)
k = rearrange(k, "b (h n) -> b h n", h=self.num_key_value_heads)
q = rearrange(q, "b (h n) -> b h n", h=self.num_heads)
k = repeat_kv2(k, self.num_key_value_groups)
v = repeat_kv2(v, self.num_key_value_groups)
dt = dt.transpose(1, 2).squeeze(-1)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
A = -torch.exp(self.A_log_bias.float())
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.head_dim).to(dtype=torch.float32)
D = torch.zeros((self.num_heads, self.head_dim), dtype=A.dtype, device=A.device)
y = selective_state_update(
ssm_state,
v,
dt,
A=A,
B=k,
C=q,
D=D,
dt_bias=dt_bias,
dt_softplus=True,
)
else:
vkq = causal_conv1d_fn(
vkq.transpose(1, 2),
rearrange(self.conv1d.weight, "d 1 w -> d w"),
self.conv1d.bias,
initial_states=None,
return_final_states=False,
activation=None if self.activation == "identity" else self.activation,
)
v, k, q = torch.split(
vkq,
[
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
self.num_heads * self.head_dim,
],
dim=1,
)
v = rearrange(v, "b (h n) l -> b h l n", h=self.num_key_value_heads)
k = rearrange(k, "b (h n) l -> b h l n", h=self.num_key_value_heads)
q = rearrange(q, "b (h n) l -> b l h n", h=self.num_heads)
k = repeat_kv(k, self.num_key_value_groups).transpose(1, 2)
v = repeat_kv(v, self.num_key_value_groups).transpose(1, 2)
A = -torch.exp(self.A_log_bias.float())
y = mamba_chunk_scan_combined(
x = v,
dt=dt,
dt_softplus=True,
A=A,
B=k,
C=q,
chunk_size=self.chunk_size,
dt_bias=self.dt_bias,
initial_states=None, # currently not supported by mamba_ssm.utils.generation
return_final_states=False,
)
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
y_true = self.g_norm_swish_gate(y, g)
y_true = y_true.view(batch, seqlen, self.hidden_size)
y_true = self.o_proj(y_true)
return y_true
def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
device = self.conv1d.weight.device
dtype = self.conv1d.weight.dtype
assert self.layer_idx is not None
if self.layer_idx not in inference_params.key_value_memory_dict:
batch_shape = (batch_size,)
conv_state = torch.zeros(
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype
)
ssm_state = torch.zeros(
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype
)
inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
else:
conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
# TODO: What if batch size changes between generation, and we reuse the same states?
if initialize_states:
conv_state.zero_()
ssm_state.zero_()
return conv_state, ssm_state
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
device = self.conv1d.weight.device
dtype = self.conv1d.weight.dtype
conv_state = torch.zeros(
batch_size, 2*self.hidden_size, self.d_conv-1, device=device, dtype=dtype
)
ssm_state = torch.zeros(
batch_size, self.num_heads, self.head_dim, self.head_dim, device=device, dtype=dtype
)
return conv_state, ssm_state
mmMamba_ATTENTION_CLASSES = {
'mha': MHA_LM,
"mamba2":Mamba2_LM
}
# Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
class mmMambaDecoderLayer(nn.Module):
def __init__(self, config: mmMambaConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.attention = mmMamba_ATTENTION_CLASSES[config.layers_block_type[layer_idx-8]](config=config, layer_idx=layer_idx)
self.feed_forward = mmMambaMLP(config)
self.attention_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.ffn_norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
inference_params = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
#start_time = time.time()
residual = hidden_states
hidden_states = self.attention_norm(hidden_states)
# Self Attention
hidden_states = self.attention(
hidden_states=hidden_states,
inference_params=inference_params,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_norm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += self_attn_weights
#end_time = time.time()
#print("language_model_time:", end_time-start_time)
return outputs
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.attention.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
mmMamba_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`mmMambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->mmMamba
@add_start_docstrings(
'The bare mmMamba Model outputting raw hidden-states without any specific head on top.',
mmMamba_START_DOCSTRING,
)
class mmMambaPreTrainedModel(PreTrainedModel):
config_class = mmMambaConfig
base_model_prefix = 'model'
supports_gradient_checkpointing = True
_no_split_modules = ['mmMambaDecoderLayer']
_skip_keys_device_placement = 'past_key_values'
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
mmMamba_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Modified from transformers.model.llama.modeling_llama.LlamaModel
@add_start_docstrings(
'The bare mmMamba Model outputting raw hidden-states without any specific head on top.',
mmMamba_START_DOCSTRING,
)
class mmMambaModel(mmMambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`mmMambaDecoderLayer`]
Args:
config: mmMambaConfig
"""
_auto_class = 'AutoModel'
def __init__(self, config: mmMambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.config = config
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([mmMambaDecoderLayer(config, (layer_idx+8)) for layer_idx in range(config.num_hidden_layers)])
self.norm = mmMambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.tok_embeddings
def set_input_embeddings(self, value):
self.tok_embeddings = value
@add_start_docstrings_to_model_forward(mmMamba_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
inference_params=None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = True,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.attn_implementation == 'flash_attention_2':
_import_flash_attn()
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
elif input_ids is not None:
batch_size, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds')
if inputs_embeds is None:
inputs_embeds = self.tok_embeddings(input_ids)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
'`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, output_attentions, None)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(decoder_layer),
hidden_states,
inference_params,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
inference_params=inference_params,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += layer_outputs[1]
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return {
layer.layer_idx: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
for layer in self.layers
}
# Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
class mmMambaForCausalLM(mmMambaPreTrainedModel):
_auto_class = 'AutoModelForCausalLM'
_tied_weights_keys = ['output.weight']
def __init__(self, config):
super().__init__(config)
self.model = mmMambaModel(config)
self.vocab_size = config.vocab_size
self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.tok_embeddings
def set_input_embeddings(self, value):
self.model.tok_embeddings = value
def get_output_embeddings(self):
return self.output
def set_output_embeddings(self, new_embeddings):
self.output = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(mmMamba_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
inference_params=None,
num_last_tokens=0,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = True,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, mmMambaForCausalLM
>>> model = mmMambaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
inference_params=inference_params,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if num_last_tokens > 0:
hidden_states = hidden_states[:, -num_last_tokens:]
logits = self.output(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
device = input_ids.device if input_ids is not None else inputs_embeds.device
output = CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
output['logits'] = output['logits'].to(device)
return output
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
return self.model.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@torch.no_grad()
def stream_chat(
self,
tokenizer,
query: str,
history: List[Tuple[str, str]] = [],
max_new_tokens: int = 1024,
do_sample: bool = True,
temperature: float = 0.8,
top_p: float = 0.8,
**kwargs,
):
"""
Return a generator in format: (response, history)
Eg.
('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
"""
if BaseStreamer is None:
raise ModuleNotFoundError(
'The version of `transformers` is too low. Please make sure '
'that you have installed `transformers>=4.28.0`.'
)
response_queue = queue.Queue(maxsize=20)
class ChatStreamer(BaseStreamer):
def __init__(self, tokenizer) -> None:
super().__init__()
self.tokenizer = tokenizer
self.queue = response_queue
self.query = query
self.history = history
self.response = ''
self.cache = []
self.received_inputs = False
self.queue.put((self.response, history + [(self.query, self.response)]))
def put(self, value):
if len(value.shape) > 1 and value.shape[0] > 1:
raise ValueError('ChatStreamer only supports batch size 1')
elif len(value.shape) > 1:
value = value[0]
if not self.received_inputs:
# The first received value is input_ids, ignore here
self.received_inputs = True
return
self.cache.extend(value.tolist())
token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
if token.strip() != '<|im_end|>':
self.response = self.response + token
history = self.history + [(self.query, self.response)]
self.queue.put((self.response, history))
self.cache = []
else:
self.end()
def end(self):
self.queue.put(None)
def stream_producer():
return self.chat(
tokenizer=tokenizer,
query=query,
streamer=ChatStreamer(tokenizer=tokenizer),
history=history,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
**kwargs,
)
def consumer():
producer = threading.Thread(target=stream_producer)
producer.start()
while True:
res = response_queue.get()
if res is None:
return
yield res
return consumer()