hussamalafandi commited on
Commit
691c76f
·
verified ·
1 Parent(s): 5664d5c

Upload folder using huggingface_hub

Browse files
Files changed (6) hide show
  1. LICENSE +21 -0
  2. README.md +91 -0
  3. c_gan.py +93 -0
  4. cgan_mnist.png +0 -0
  5. discriminator.pth +3 -0
  6. generator.pth +3 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 Hussam Alafandi
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - cgan
4
+ - conditional-gan
5
+ - generative-adversarial-network
6
+ - image-generation
7
+ - deep-learning
8
+ datasets:
9
+ - MNIST
10
+ license: mit
11
+ ---
12
+
13
+ # Conditional GAN Model Card
14
+
15
+ ## Model Description
16
+ This is a Conditional GAN (cGAN) trained on the MNIST dataset to generate realistic 28x28 grayscale images of handwritten digits. The model leverages label information to guide image generation and was developed as part of the [Generative AI](https://github.com/hussamalafandi/Generative_AI) course.
17
+
18
+ ## Training Details
19
+ - **Dataset**: MNIST
20
+ - **Subset Size**: 60,000 images
21
+ - **Image Size**: 28x28
22
+ - **Number of Channels**: 1 (grayscale)
23
+ - **Latent Dimension**: 100
24
+ - **Generator Feature Map Size**: 64
25
+ - **Discriminator Feature Map Size**: 64
26
+ - **Batch Size**: 128
27
+ - **Epochs**: 50
28
+ - **Learning Rate**: 0.0002
29
+ - **Beta1**: 0.5
30
+ - **Weight Decay**: 0
31
+ - **Optimizer**: Adam
32
+ - **Hardware**: CUDA-enabled GPU
33
+ - **Logging**: Weights and Biases (wandb)
34
+
35
+ ### Weights and Biases Run
36
+
37
+ The training process was tracked using [Weights and Biases](https://wandb.ai). You can view the full training logs and metrics [here](https://wandb.ai/hussam-alafandi/cGAN-MNIST/runs/w11n93e5?nw=nwuserhussamalafandi).
38
+
39
+ ## Usage
40
+
41
+ ### Downloading the Model from the Hub
42
+
43
+ You can download the model checkpoint directly from the hub using the huggingface_hub library:
44
+ ```python
45
+ from huggingface_hub import hf_hub_download
46
+
47
+ # Download the model checkpoint from the hub
48
+ checkpoint_path = hf_hub_download(repo_id="hussamalafandi/cGAN-MNIST", filename="generator.pth")
49
+ ```
50
+
51
+ ### Loading the Model Locally
52
+
53
+ ```python
54
+ import torch
55
+ from c_gan import Generator
56
+
57
+ # Load the configuration
58
+ config = {
59
+ "latent_dim": 100,
60
+ "ngf": 64,
61
+ "nc": 1,
62
+ "num_classes": 10,
63
+ "embed_dim": 50
64
+ }
65
+
66
+ # Initialize the generator
67
+ generator = Generator(config)
68
+
69
+ # Load the downloaded checkpoint (or a local path)
70
+ generator.load_state_dict(torch.load(checkpoint_path, map_location=torch.device('cuda' if torch.cuda.is_available() else 'cpu')))
71
+
72
+ # Set the model to evaluation mode
73
+ generator.eval()
74
+
75
+ # Example: Generate an image
76
+ latent_vector = torch.randn(1, config["latent_dim"], 1, 1) # Batch size of 1
77
+
78
+ if torch.cuda.is_available():
79
+ latent_vector = latent_vector.cuda()
80
+ generator = generator.cuda()
81
+
82
+ generated_image = generator(latent_vector, torch.tensor([7])) # Example label: 7
83
+ ```
84
+
85
+ ## Example Results
86
+
87
+ ![generate image](./cgan_mnist.png)
88
+
89
+ ## Resources
90
+ - **Course Repository**: [Generative AI Course](https://github.com/hussamalafandi/Generative_AI)
91
+ - **WandB Run**: [cGAN-MNIST Run](https://wandb.ai/hussam-alafandi/cGAN-MNIST/runs/w11n93e5?nw=nwuserhussamalafandi)
c_gan.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+
4
+
5
+ class Generator(nn.Module):
6
+ def __init__(self, config):
7
+ super(Generator, self).__init__()
8
+
9
+ self.latent_dim = config["latent_dim"]
10
+ self.ngf = config["ngf"]
11
+ self.nc = config["nc"]
12
+
13
+ self.n_classes = config["num_classes"]
14
+ self.embed_dim = config["embed_dim"]
15
+
16
+ # Label embedding: maps labels to vectors of size embed_dim.
17
+ self.label_embed = nn.Embedding(self.n_classes, self.embed_dim)
18
+
19
+ # DCGAN generator architecture
20
+ self.main = nn.Sequential(
21
+ # Combine noise and label embedding -> output shape: (latent_dim + embed_dim, 1, 1)
22
+ # upscale to 7x7 with ngf*4 channels.
23
+ nn.ConvTranspose2d(self.latent_dim + self.embed_dim, self.ngf * 4,
24
+ kernel_size=7, stride=1, padding=0, bias=False),
25
+ nn.BatchNorm2d(self.ngf * 4),
26
+ nn.ReLU(True),
27
+
28
+ # 7x7 -> 14x14
29
+ nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2,
30
+ kernel_size=4, stride=2, padding=1, bias=False),
31
+ nn.BatchNorm2d(self.ngf * 2),
32
+ nn.ReLU(True),
33
+
34
+ # 14x14 -> 28x28.
35
+ nn.ConvTranspose2d(self.ngf * 2, self.ngf,
36
+ kernel_size=4, stride=2, padding=1, bias=False),
37
+ nn.BatchNorm2d(self.ngf),
38
+ nn.ReLU(True),
39
+
40
+ # Final layer: convert to 1 channel, preserving 28x28.
41
+ nn.ConvTranspose2d(self.ngf, self.nc, kernel_size=3,
42
+ stride=1, padding=1, bias=False),
43
+ nn.Tanh()
44
+ )
45
+
46
+ def forward(self, noise, labels):
47
+ # Embed labels and reshape to (batch, embed_dim, 1, 1)
48
+ label_embedding = self.label_embed(labels).unsqueeze(2).unsqueeze(3)
49
+ # Concatenate noise and embedded labels along the channel dimension.
50
+ gen_input = torch.cat([noise, label_embedding], dim=1)
51
+ return self.main(gen_input)
52
+
53
+
54
+ class Discriminator(nn.Module):
55
+ def __init__(self, config):
56
+ super(Discriminator, self).__init__()
57
+
58
+ self.ndf = config["ndf"]
59
+ self.nc = config["nc"]
60
+
61
+ self.n_classes = config["num_classes"]
62
+ self.embed_dim = config["embed_dim"]
63
+
64
+ # Label embedding: maps labels to vectors of size embed_dim.
65
+ self.label_embed = nn.Embedding(self.n_classes, self.embed_dim)
66
+
67
+ # DCGAN discriminator architecture
68
+ self.main = nn.Sequential(
69
+
70
+ # Input: (nc + embed_dim) x 28 x 28
71
+ nn.Conv2d(self.nc + self.embed_dim, self.ndf, kernel_size=4, stride=2, padding=1, bias=False),
72
+ nn.LeakyReLU(0.2, inplace=True),
73
+
74
+ # State: (ndf) x 14 x 14
75
+ nn.Conv2d(self.ndf, self.ndf * 2, kernel_size=4, stride=2, padding=1, bias=False),
76
+ nn.BatchNorm2d(self.ndf * 2),
77
+ nn.LeakyReLU(0.2, inplace=True),
78
+
79
+ # State: (ndf*2) x 1 x 1
80
+ nn.Conv2d(self.ndf * 2, 1, kernel_size=7, stride=1, padding=0, bias=False),
81
+ nn.Sigmoid()
82
+ )
83
+
84
+ def forward(self, img, labels):
85
+ # Embed the labels and replicate them spatially
86
+ label_embedding = self.label_embed(labels).unsqueeze(2).unsqueeze(3)
87
+ # Assume img is of shape (batch, nc, H, W)
88
+ label_embedding = label_embedding.expand(-1, -1, img.size(2), img.size(3))
89
+
90
+ # Concatenate the image with the label embedding
91
+ d_in = torch.cat((img, label_embedding), dim=1)
92
+
93
+ return self.main(d_in).view(-1, 1).squeeze(1)
cgan_mnist.png ADDED
discriminator.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be8809f80b6c844cd2e763fd2b0d9448d4193a3e8674f2053aa4ded093daa66e
3
+ size 765962
generator.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a29a4bd5c0eab11f7f920701a56cc8512a479a074c24110c7e2c1a303210c61
3
+ size 10165962