Upload 6 files
Browse files- coding_expert/config/config.py +169 -0
- coding_expert/config/requirements.txt +12 -0
- coding_expert/data/prepare_data.py +221 -0
- coding_expert/expert.py +21 -0
- coding_expert/tasks/validation.py +245 -0
- coding_expert/utils/data_processor.py +253 -0
coding_expert/config/config.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Configuration for the Coding Expert model
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Core programming domains
|
6 |
+
CODING_DOMAINS = {
|
7 |
+
"programming_languages": {
|
8 |
+
"python": {
|
9 |
+
"level": "expert",
|
10 |
+
"focus": ["data structures", "algorithms", "web development", "machine learning"]
|
11 |
+
},
|
12 |
+
"javascript": {
|
13 |
+
"level": "expert",
|
14 |
+
"focus": ["frontend", "backend", "frameworks", "performance"]
|
15 |
+
},
|
16 |
+
"java": {
|
17 |
+
"level": "expert",
|
18 |
+
"focus": ["enterprise", "concurrency", "frameworks", "design patterns"]
|
19 |
+
},
|
20 |
+
"c++": {
|
21 |
+
"level": "expert",
|
22 |
+
"focus": ["systems", "performance", "templates", "memory management"]
|
23 |
+
},
|
24 |
+
"go": {
|
25 |
+
"level": "expert",
|
26 |
+
"focus": ["concurrency", "networking", "performance", "cloud"]
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"frameworks": {
|
30 |
+
"web": {
|
31 |
+
"django": "expert",
|
32 |
+
"flask": "expert",
|
33 |
+
"fastapi": "expert",
|
34 |
+
"react": "expert",
|
35 |
+
"vue": "expert",
|
36 |
+
"angular": "expert"
|
37 |
+
},
|
38 |
+
"mobile": {
|
39 |
+
"flutter": "expert",
|
40 |
+
"react_native": "expert",
|
41 |
+
"swift": "expert",
|
42 |
+
"kotlin": "expert"
|
43 |
+
},
|
44 |
+
"cloud": {
|
45 |
+
"aws": "expert",
|
46 |
+
"gcp": "expert",
|
47 |
+
"azure": "expert",
|
48 |
+
"kubernetes": "expert"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"tools": {
|
52 |
+
"ci_cd": ["github_actions", "jenkins", "circleci", "gitlab_ci"],
|
53 |
+
"version_control": ["git", "mercurial"],
|
54 |
+
"package_management": ["pip", "npm", "maven", "gradle", "cargo"],
|
55 |
+
"ide": ["vscode", "pycharm", "intellij", "vim", "emacs"]
|
56 |
+
}
|
57 |
+
}
|
58 |
+
|
59 |
+
# Core coding tasks
|
60 |
+
CODING_TASKS = {
|
61 |
+
"problem_solving": {
|
62 |
+
"level": "expert",
|
63 |
+
"subtasks": [
|
64 |
+
"algorithm_design",
|
65 |
+
"data_structure_selection",
|
66 |
+
"complexity_analysis",
|
67 |
+
"optimization"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
"code_review": {
|
71 |
+
"level": "expert",
|
72 |
+
"subtasks": [
|
73 |
+
"architecture_review",
|
74 |
+
"security_review",
|
75 |
+
"performance_review",
|
76 |
+
"code_style_review"
|
77 |
+
]
|
78 |
+
},
|
79 |
+
"debugging": {
|
80 |
+
"level": "expert",
|
81 |
+
"subtasks": [
|
82 |
+
"memory_leaks",
|
83 |
+
"race_conditions",
|
84 |
+
"performance_bottlenecks",
|
85 |
+
"concurrency_issues"
|
86 |
+
]
|
87 |
+
},
|
88 |
+
"testing": {
|
89 |
+
"level": "expert",
|
90 |
+
"subtasks": [
|
91 |
+
"unit_testing",
|
92 |
+
"integration_testing",
|
93 |
+
"performance_testing",
|
94 |
+
"security_testing"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
"architecture_design": {
|
98 |
+
"level": "expert",
|
99 |
+
"subtasks": [
|
100 |
+
"microservices",
|
101 |
+
"distributed_systems",
|
102 |
+
"scalability",
|
103 |
+
"fault_tolerance"
|
104 |
+
]
|
105 |
+
}
|
106 |
+
}
|
107 |
+
|
108 |
+
# Core datasets
|
109 |
+
CODING_DATASETS = {
|
110 |
+
"CodeSearchNet": {
|
111 |
+
"source": "codeium/codeium",
|
112 |
+
"split": "train",
|
113 |
+
"fields": ["code", "docstring", "language", "function_name"],
|
114 |
+
"description": "HuggingFace - multi-language code corpus",
|
115 |
+
"tasks": ["code_search", "code_completion", "documentation"]
|
116 |
+
},
|
117 |
+
"HumanEval": {
|
118 |
+
"source": "openai/human_eval",
|
119 |
+
"split": "test",
|
120 |
+
"fields": ["task_id", "prompt", "canonical_solution", "test", "entry_point"],
|
121 |
+
"description": "OpenAI's functional code evaluation dataset",
|
122 |
+
"tasks": ["code_generation", "function_implementation", "unit_testing"]
|
123 |
+
},
|
124 |
+
"MBPP": {
|
125 |
+
"source": "mbpp/mbpp",
|
126 |
+
"split": "train",
|
127 |
+
"fields": ["task_id", "text", "code", "test_list", "challenge_test_list"],
|
128 |
+
"description": "Mostly Basic Python Problems",
|
129 |
+
"tasks": ["problem_solving", "code_generation", "unit_testing"]
|
130 |
+
},
|
131 |
+
"Spider": {
|
132 |
+
"source": "yale-lily/spider",
|
133 |
+
"split": "train",
|
134 |
+
"fields": ["query", "question", "db_id", "sql"],
|
135 |
+
"description": "Text-to-SQL mapping",
|
136 |
+
"tasks": ["sql_generation", "text_to_sql", "database_queries"]
|
137 |
+
},
|
138 |
+
"DeepFix": {
|
139 |
+
"source": "deepfix/deepfix",
|
140 |
+
"split": "train",
|
141 |
+
"fields": ["code", "fixed_code", "error_type"],
|
142 |
+
"description": "Bug fixing dataset",
|
143 |
+
"tasks": ["bug_fixing", "error_detection", "code_correction"]
|
144 |
+
},
|
145 |
+
"CodeXGLUE": {
|
146 |
+
"source": "microsoft/CodeXGLUE",
|
147 |
+
"split": "train",
|
148 |
+
"fields": ["code", "docstring", "task", "language"],
|
149 |
+
"description": "Multitask code understanding/generation benchmark",
|
150 |
+
"tasks": ["code_translation", "code_summarization", "code_generation"]
|
151 |
+
}
|
152 |
+
}
|
153 |
+
|
154 |
+
# Print configuration summary
|
155 |
+
def print_config_summary():
|
156 |
+
print("\nCoding Expert Configuration Summary:")
|
157 |
+
print(f"Number of domains: {len(CODING_DOMAINS)}")
|
158 |
+
print(f"Number of languages: {len(CODING_DOMAINS['programming_languages'])}")
|
159 |
+
print(f"Number of tasks: {len(CODING_TASKS)}")
|
160 |
+
print(f"Number of datasets: {len(CODING_DATASETS)}")
|
161 |
+
print("\nDataset Details:")
|
162 |
+
for name, config in CODING_DATASETS.items():
|
163 |
+
print(f"\n{name}:")
|
164 |
+
print(f"Description: {config['description']}")
|
165 |
+
print(f"Tasks: {', '.join(config['tasks'])}")
|
166 |
+
print(f"Fields: {', '.join(config['fields'])}")
|
167 |
+
|
168 |
+
if __name__ == "__main__":
|
169 |
+
print_config_summary()
|
coding_expert/config/requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers>=4.30.0
|
2 |
+
sympy>=1.11.1
|
3 |
+
torch>=2.0.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
scipy>=1.10.0
|
6 |
+
pandas>=2.0.0
|
7 |
+
huggingface_hub>=0.16.0
|
8 |
+
jsonlines>=3.0.0
|
9 |
+
pyyaml>=5.4.1
|
10 |
+
datasets>=2.14.0
|
11 |
+
psutil>=5.9.0
|
12 |
+
astroid>=2.16.0
|
coding_expert/data/prepare_data.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Data preparation script for the Coding Expert model
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import jsonlines
|
8 |
+
from typing import Dict, List, Any
|
9 |
+
import sys
|
10 |
+
import psutil
|
11 |
+
from datasets import load_dataset
|
12 |
+
import ast
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from data_processor import CodeDataProcessor
|
16 |
+
|
17 |
+
class CodeDataPreparer:
|
18 |
+
def __init__(self, output_dir: str = "processed_data"):
|
19 |
+
self.output_dir = Path(output_dir)
|
20 |
+
self.output_dir.mkdir(exist_ok=True)
|
21 |
+
self.datasets = {
|
22 |
+
"CodeSearchNet": {
|
23 |
+
"source": "codeium/codeium",
|
24 |
+
"split": "train",
|
25 |
+
"fields": ["code", "docstring", "language", "function_name"]
|
26 |
+
},
|
27 |
+
"HumanEval": {
|
28 |
+
"source": "openai/human_eval",
|
29 |
+
"split": "test",
|
30 |
+
"fields": ["task_id", "prompt", "canonical_solution", "test", "entry_point"]
|
31 |
+
},
|
32 |
+
"MBPP": {
|
33 |
+
"source": "mbpp/mbpp",
|
34 |
+
"split": "train",
|
35 |
+
"fields": ["task_id", "text", "code", "test_list", "challenge_test_list"]
|
36 |
+
},
|
37 |
+
"Spider": {
|
38 |
+
"source": "yale-lily/spider",
|
39 |
+
"split": "train",
|
40 |
+
"fields": ["query", "question", "db_id", "sql"]
|
41 |
+
},
|
42 |
+
"DeepFix": {
|
43 |
+
"source": "deepfix/deepfix",
|
44 |
+
"split": "train",
|
45 |
+
"fields": ["code", "fixed_code", "error_type"]
|
46 |
+
},
|
47 |
+
"CodeXGLUE": {
|
48 |
+
"source": "microsoft/CodeXGLUE",
|
49 |
+
"split": "train",
|
50 |
+
"fields": ["code", "docstring", "task", "language"]
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
def process_dataset(self, dataset: List[Dict[str, Any]], dataset_name: str) -> List[Dict[str, Any]]:
|
55 |
+
"""Process a specific dataset"""
|
56 |
+
processed = []
|
57 |
+
error_count = 0
|
58 |
+
|
59 |
+
print(f"\nProcessing {dataset_name} dataset...")
|
60 |
+
|
61 |
+
for idx, example in enumerate(dataset):
|
62 |
+
try:
|
63 |
+
processed_example = self._process_example(dataset_name, example)
|
64 |
+
processed.append(processed_example)
|
65 |
+
except Exception as e:
|
66 |
+
print(f"Error processing example {idx} in {dataset_name}: {str(e)}")
|
67 |
+
error_count += 1
|
68 |
+
|
69 |
+
print(f"Processed {len(processed)} examples from {dataset_name}")
|
70 |
+
print(f"Encountered {error_count} errors during processing")
|
71 |
+
return processed
|
72 |
+
|
73 |
+
def _process_example(self, dataset_name: str, example: Dict[str, Any]) -> Dict[str, Any]:
|
74 |
+
"""Process a single example based on its dataset type"""
|
75 |
+
if dataset_name == "CodeSearchNet":
|
76 |
+
return self._process_code_search_net(example)
|
77 |
+
elif dataset_name == "HumanEval":
|
78 |
+
return self._process_human_eval(example)
|
79 |
+
elif dataset_name == "MBPP":
|
80 |
+
return self._process_mbpp(example)
|
81 |
+
elif dataset_name == "Spider":
|
82 |
+
return self._process_spider(example)
|
83 |
+
elif dataset_name == "DeepFix":
|
84 |
+
return self._process_deep_fix(example)
|
85 |
+
elif dataset_name == "CodeXGLUE":
|
86 |
+
return self._process_codexglue(example)
|
87 |
+
else:
|
88 |
+
raise ValueError(f"Unknown dataset: {dataset_name}")
|
89 |
+
|
90 |
+
def _process_code_search_net(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
91 |
+
"""Process CodeSearchNet example"""
|
92 |
+
return {
|
93 |
+
"code": example["code"].strip(),
|
94 |
+
"docstring": example["docstring"].strip(),
|
95 |
+
"language": example["language"],
|
96 |
+
"function_name": example["function_name"],
|
97 |
+
"code_analysis": self._analyze_code(example["code"])
|
98 |
+
}
|
99 |
+
|
100 |
+
def _process_human_eval(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
101 |
+
"""Process HumanEval example"""
|
102 |
+
return {
|
103 |
+
"task_id": example["task_id"],
|
104 |
+
"prompt": example["prompt"].strip(),
|
105 |
+
"solution": example["canonical_solution"].strip(),
|
106 |
+
"test": example["test"].strip(),
|
107 |
+
"entry_point": example["entry_point"],
|
108 |
+
"code_analysis": self._analyze_code(example["canonical_solution"])
|
109 |
+
}
|
110 |
+
|
111 |
+
def _process_mbpp(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
112 |
+
"""Process MBPP example"""
|
113 |
+
return {
|
114 |
+
"task_id": example["task_id"],
|
115 |
+
"problem": example["text"].strip(),
|
116 |
+
"solution": example["code"].strip(),
|
117 |
+
"test_list": example["test_list"],
|
118 |
+
"challenge_test_list": example["challenge_test_list"],
|
119 |
+
"code_analysis": self._analyze_code(example["code"])
|
120 |
+
}
|
121 |
+
|
122 |
+
def _process_spider(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
123 |
+
"""Process Spider example"""
|
124 |
+
return {
|
125 |
+
"query": example["query"].strip(),
|
126 |
+
"question": example["question"].strip(),
|
127 |
+
"db_id": example["db_id"],
|
128 |
+
"sql": example["sql"].strip(),
|
129 |
+
"code_analysis": self._analyze_code(example["sql"])
|
130 |
+
}
|
131 |
+
|
132 |
+
def _process_deep_fix(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
133 |
+
"""Process DeepFix example"""
|
134 |
+
return {
|
135 |
+
"original_code": example["code"].strip(),
|
136 |
+
"fixed_code": example["fixed_code"].strip(),
|
137 |
+
"error_type": example["error_type"],
|
138 |
+
"code_analysis": self._analyze_code(example["fixed_code"])
|
139 |
+
}
|
140 |
+
|
141 |
+
def _process_codexglue(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
142 |
+
"""Process CodeXGLUE example"""
|
143 |
+
return {
|
144 |
+
"code": example["code"].strip(),
|
145 |
+
"docstring": example["docstring"].strip(),
|
146 |
+
"task": example["task"],
|
147 |
+
"language": example["language"],
|
148 |
+
"code_analysis": self._analyze_code(example["code"])
|
149 |
+
}
|
150 |
+
|
151 |
+
def _analyze_code(self, code: str) -> Dict[str, Any]:
|
152 |
+
"""Analyze code structure and complexity"""
|
153 |
+
try:
|
154 |
+
tree = ast.parse(code)
|
155 |
+
return {
|
156 |
+
"num_functions": len([node for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)]),
|
157 |
+
"num_classes": len([node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]),
|
158 |
+
"complexity": self._calculate_complexity(tree)
|
159 |
+
}
|
160 |
+
except Exception as e:
|
161 |
+
return {"error": str(e)}
|
162 |
+
|
163 |
+
def _calculate_complexity(self, tree: ast.AST) -> int:
|
164 |
+
"""Calculate cyclomatic complexity"""
|
165 |
+
complexity = 1 # Start with 1 for the main program
|
166 |
+
for node in ast.walk(tree):
|
167 |
+
if isinstance(node, (ast.If, ast.For, ast.While, ast.Try, ast.ExceptHandler)):
|
168 |
+
complexity += 1
|
169 |
+
return complexity
|
170 |
+
|
171 |
+
def save_to_jsonl(self, data: List[Dict[str, Any]], filename: str):
|
172 |
+
"""Save data to JSONL file"""
|
173 |
+
filepath = self.output_dir / filename
|
174 |
+
with jsonlines.open(filepath, mode='w') as writer:
|
175 |
+
writer.write_all(data)
|
176 |
+
return filepath
|
177 |
+
|
178 |
+
def print_sample(self, data: List[Dict[str, Any]], count: int = 3):
|
179 |
+
"""Print sample of processed data"""
|
180 |
+
print("\nSample data:")
|
181 |
+
for i, example in enumerate(data[:count]):
|
182 |
+
print(f"\nSample {i+1}:")
|
183 |
+
print(json.dumps(example, indent=2))
|
184 |
+
|
185 |
+
def print_memory_usage(self):
|
186 |
+
"""Print current memory usage"""
|
187 |
+
process = psutil.Process()
|
188 |
+
memory_info = process.memory_info()
|
189 |
+
print(f"Current memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|
190 |
+
|
191 |
+
def main():
|
192 |
+
preparer = CodeDataPreparer()
|
193 |
+
|
194 |
+
# Process each dataset
|
195 |
+
for dataset_name, config in preparer.datasets.items():
|
196 |
+
try:
|
197 |
+
print(f"\nLoading {dataset_name} dataset...")
|
198 |
+
dataset = load_dataset(config["source"], split=config["split"])
|
199 |
+
print(f"Loaded {len(dataset)} samples from {dataset_name}")
|
200 |
+
|
201 |
+
processed_data = preparer.process_dataset(dataset, dataset_name)
|
202 |
+
print(f"Processed {len(processed_data)} samples")
|
203 |
+
|
204 |
+
preparer.print_sample(processed_data)
|
205 |
+
|
206 |
+
# Save processed data
|
207 |
+
output_path = preparer.save_to_jsonl(
|
208 |
+
processed_data,
|
209 |
+
f"{dataset_name.lower()}_processed.jsonl"
|
210 |
+
)
|
211 |
+
print(f"\nSaved {dataset_name} data to: {output_path}")
|
212 |
+
|
213 |
+
except Exception as e:
|
214 |
+
print(f"Error processing {dataset_name} dataset: {str(e)}")
|
215 |
+
print("Continuing with next dataset...")
|
216 |
+
|
217 |
+
# Print memory usage
|
218 |
+
preparer.print_memory_usage()
|
219 |
+
|
220 |
+
if __name__ == "__main__":
|
221 |
+
main()
|
coding_expert/expert.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .config import config
|
2 |
+
from .utils.data_processor import DataProcessor
|
3 |
+
from .tasks.validation import Validation
|
4 |
+
|
5 |
+
class CodingExpert:
|
6 |
+
def __init__(self):
|
7 |
+
self.config = config
|
8 |
+
self.data_processor = DataProcessor()
|
9 |
+
self.validator = Validation()
|
10 |
+
|
11 |
+
def process_data(self, input_data):
|
12 |
+
"""Process coding-related data using the data processor."""
|
13 |
+
return self.data_processor.process(input_data)
|
14 |
+
|
15 |
+
def validate(self, code):
|
16 |
+
"""Validate code using the validation system."""
|
17 |
+
return self.validator.validate(code)
|
18 |
+
|
19 |
+
def get_config(self):
|
20 |
+
"""Return the current configuration."""
|
21 |
+
return self.config
|
coding_expert/tasks/validation.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Validation module for the Coding Expert model
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from pathlib import Path
|
7 |
+
import hashlib
|
8 |
+
import datetime
|
9 |
+
from typing import Dict, Any, List, Optional
|
10 |
+
import subprocess
|
11 |
+
import ast
|
12 |
+
import sys
|
13 |
+
import psutil
|
14 |
+
|
15 |
+
class CodeValidator:
|
16 |
+
def __init__(self, checkpoint_dir: str = "checkpoints"):
|
17 |
+
self.checkpoint_dir = Path(checkpoint_dir)
|
18 |
+
self.checkpoint_dir.mkdir(exist_ok=True)
|
19 |
+
self.validation_dir = self.checkpoint_dir / "validation"
|
20 |
+
self.validation_dir.mkdir(exist_ok=True)
|
21 |
+
|
22 |
+
# Initialize validation metrics
|
23 |
+
self.metrics = {
|
24 |
+
"code_quality": [],
|
25 |
+
"performance": [],
|
26 |
+
"memory_usage": [],
|
27 |
+
"error_count": []
|
28 |
+
}
|
29 |
+
|
30 |
+
def validate_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
31 |
+
"""Validate code quality and performance"""
|
32 |
+
try:
|
33 |
+
# Parse the code to check syntax
|
34 |
+
tree = ast.parse(code)
|
35 |
+
|
36 |
+
# Calculate code metrics
|
37 |
+
metrics = self._calculate_code_metrics(tree)
|
38 |
+
|
39 |
+
# Run static analysis
|
40 |
+
static_analysis = self._run_static_analysis(code, language)
|
41 |
+
|
42 |
+
# Check for common issues
|
43 |
+
issues = self._check_common_issues(tree)
|
44 |
+
|
45 |
+
return {
|
46 |
+
"is_valid": not issues,
|
47 |
+
"metrics": metrics,
|
48 |
+
"static_analysis": static_analysis,
|
49 |
+
"issues": issues,
|
50 |
+
"validation_score": self._calculate_validation_score(metrics, issues)
|
51 |
+
}
|
52 |
+
except Exception as e:
|
53 |
+
return {
|
54 |
+
"is_valid": False,
|
55 |
+
"error": str(e),
|
56 |
+
"validation_score": 0.0
|
57 |
+
}
|
58 |
+
|
59 |
+
def _calculate_code_metrics(self, tree: ast.AST) -> Dict[str, Any]:
|
60 |
+
"""Calculate various code metrics"""
|
61 |
+
return {
|
62 |
+
"complexity": self._calculate_complexity(tree),
|
63 |
+
"num_functions": len([node for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)]),
|
64 |
+
"num_classes": len([node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]),
|
65 |
+
"num_imports": len([node for node in ast.walk(tree) if isinstance(node, ast.Import)]),
|
66 |
+
"num_statements": len([node for node in ast.walk(tree) if isinstance(node, ast.stmt)])
|
67 |
+
}
|
68 |
+
|
69 |
+
def _calculate_complexity(self, tree: ast.AST) -> int:
|
70 |
+
"""Calculate cyclomatic complexity"""
|
71 |
+
complexity = 1 # Start with 1 for the main program
|
72 |
+
for node in ast.walk(tree):
|
73 |
+
if isinstance(node, (ast.If, ast.For, ast.While, ast.Try, ast.ExceptHandler)):
|
74 |
+
complexity += 1
|
75 |
+
return complexity
|
76 |
+
|
77 |
+
def _run_static_analysis(self, code: str, language: str) -> Dict[str, Any]:
|
78 |
+
"""Run static analysis tools"""
|
79 |
+
if language == "python":
|
80 |
+
try:
|
81 |
+
# Run pylint
|
82 |
+
process = subprocess.run(
|
83 |
+
["pylint", "-"],
|
84 |
+
input=code,
|
85 |
+
capture_output=True,
|
86 |
+
text=True,
|
87 |
+
timeout=5
|
88 |
+
)
|
89 |
+
score = float(process.stdout.split("Your code has been rated at")[1].split()[0])
|
90 |
+
return {
|
91 |
+
"pylint_score": score,
|
92 |
+
"issues": process.stdout.count("error")
|
93 |
+
}
|
94 |
+
except Exception as e:
|
95 |
+
return {
|
96 |
+
"pylint_score": 0.0,
|
97 |
+
"error": str(e)
|
98 |
+
}
|
99 |
+
return {}
|
100 |
+
|
101 |
+
def _check_common_issues(self, tree: ast.AST) -> List[str]:
|
102 |
+
"""Check for common code issues"""
|
103 |
+
issues = []
|
104 |
+
|
105 |
+
# Check for global variables
|
106 |
+
for node in ast.walk(tree):
|
107 |
+
if isinstance(node, ast.Global):
|
108 |
+
issues.append("Global variables detected")
|
109 |
+
|
110 |
+
# Check for long functions
|
111 |
+
for node in ast.walk(tree):
|
112 |
+
if isinstance(node, ast.FunctionDef):
|
113 |
+
if len(node.body) > 50:
|
114 |
+
issues.append(f"Function {node.name} is too long")
|
115 |
+
|
116 |
+
# Check for complex if statements
|
117 |
+
for node in ast.walk(tree):
|
118 |
+
if isinstance(node, ast.If):
|
119 |
+
if len(node.body) > 20:
|
120 |
+
issues.append("Complex if statement detected")
|
121 |
+
|
122 |
+
return issues
|
123 |
+
|
124 |
+
def _calculate_validation_score(self, metrics: Dict[str, Any], issues: List[str]) -> float:
|
125 |
+
"""Calculate overall validation score"""
|
126 |
+
score = 1.0
|
127 |
+
|
128 |
+
# Penalize for code complexity
|
129 |
+
score *= 0.9 if metrics["complexity"] > 10 else 1.0
|
130 |
+
|
131 |
+
# Penalize for issues
|
132 |
+
score *= 0.9 ** len(issues)
|
133 |
+
|
134 |
+
return max(0.0, min(1.0, score))
|
135 |
+
|
136 |
+
def create_checkpoint(self, data: Dict[str, Any], name: str = None) -> str:
|
137 |
+
"""Create a checkpoint of validation data"""
|
138 |
+
if name is None:
|
139 |
+
name = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
140 |
+
|
141 |
+
checkpoint_path = self.validation_dir / f"checkpoint_{name}.json"
|
142 |
+
|
143 |
+
# Add timestamp and hash
|
144 |
+
data["timestamp"] = str(datetime.datetime.now())
|
145 |
+
data["hash"] = hashlib.sha256(str(data).encode()).hexdigest()
|
146 |
+
|
147 |
+
with open(checkpoint_path, 'w') as f:
|
148 |
+
json.dump(data, f, indent=2)
|
149 |
+
|
150 |
+
return str(checkpoint_path)
|
151 |
+
|
152 |
+
def load_checkpoint(self, name: str) -> Optional[Dict[str, Any]]:
|
153 |
+
"""Load a validation checkpoint"""
|
154 |
+
checkpoint_path = self.validation_dir / f"checkpoint_{name}.json"
|
155 |
+
if not checkpoint_path.exists():
|
156 |
+
return None
|
157 |
+
|
158 |
+
with open(checkpoint_path, 'r') as f:
|
159 |
+
return json.load(f)
|
160 |
+
|
161 |
+
def validate_dataset(self, dataset: List[Dict[str, Any]]) -> Dict[str, Any]:
|
162 |
+
"""Validate a complete dataset"""
|
163 |
+
results = []
|
164 |
+
error_count = 0
|
165 |
+
|
166 |
+
for idx, example in enumerate(dataset):
|
167 |
+
try:
|
168 |
+
# Validate code
|
169 |
+
if "code" in example:
|
170 |
+
code_result = self.validate_code(
|
171 |
+
example["code"],
|
172 |
+
example.get("language", "python")
|
173 |
+
)
|
174 |
+
results.append(code_result)
|
175 |
+
|
176 |
+
# Validate code review
|
177 |
+
if "review" in example:
|
178 |
+
review_result = self._validate_code_review(
|
179 |
+
example["code"],
|
180 |
+
example["review"]
|
181 |
+
)
|
182 |
+
results.append(review_result)
|
183 |
+
except Exception as e:
|
184 |
+
error_count += 1
|
185 |
+
results.append({
|
186 |
+
"error": str(e),
|
187 |
+
"validation_score": 0.0
|
188 |
+
})
|
189 |
+
|
190 |
+
# Calculate overall metrics
|
191 |
+
scores = [r["validation_score"] for r in results if "validation_score" in r]
|
192 |
+
if scores:
|
193 |
+
avg_score = np.mean(scores)
|
194 |
+
else:
|
195 |
+
avg_score = 0.0
|
196 |
+
|
197 |
+
return {
|
198 |
+
"total_examples": len(dataset),
|
199 |
+
"processed_examples": len(results),
|
200 |
+
"error_count": error_count,
|
201 |
+
"average_score": float(avg_score),
|
202 |
+
"detailed_results": results
|
203 |
+
}
|
204 |
+
|
205 |
+
def save_validation_report(self, report: Dict[str, Any], name: str = None) -> str:
|
206 |
+
"""Save a validation report"""
|
207 |
+
if name is None:
|
208 |
+
name = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
209 |
+
|
210 |
+
report_path = self.validation_dir / f"report_{name}.json"
|
211 |
+
|
212 |
+
# Add timestamp and summary metrics
|
213 |
+
report["timestamp"] = str(datetime.datetime.now())
|
214 |
+
report["summary"] = {
|
215 |
+
"accuracy": report.get("average_score", 0.0),
|
216 |
+
"error_rate": report.get("error_count", 0) / report.get("total_examples", 1)
|
217 |
+
}
|
218 |
+
|
219 |
+
with open(report_path, 'w') as f:
|
220 |
+
json.dump(report, f, indent=2)
|
221 |
+
|
222 |
+
return str(report_path)
|
223 |
+
|
224 |
+
def _validate_code_review(self, code: str, review: str) -> Dict[str, Any]:
|
225 |
+
"""Validate code review comments"""
|
226 |
+
try:
|
227 |
+
# Validate code
|
228 |
+
code_result = self.validate_code(code)
|
229 |
+
|
230 |
+
# Check if review addresses key issues
|
231 |
+
issues = self._check_common_issues(ast.parse(code))
|
232 |
+
review_issues = [issue for issue in issues if issue.lower() in review.lower()]
|
233 |
+
|
234 |
+
return {
|
235 |
+
"is_valid": len(review_issues) > 0,
|
236 |
+
"review_issues_covered": len(review_issues),
|
237 |
+
"total_issues": len(issues),
|
238 |
+
"validation_score": code_result["validation_score"] * (len(review_issues) / len(issues) if issues else 1.0)
|
239 |
+
}
|
240 |
+
except Exception as e:
|
241 |
+
return {
|
242 |
+
"is_valid": False,
|
243 |
+
"error": str(e),
|
244 |
+
"validation_score": 0.0
|
245 |
+
}
|
coding_expert/utils/data_processor.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Data processing utilities for the Coding Expert model
|
3 |
+
"""
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import jsonlines
|
8 |
+
from typing import Dict, List, Any, Optional, Tuple
|
9 |
+
import hashlib
|
10 |
+
import datetime
|
11 |
+
import logging
|
12 |
+
import numpy as np
|
13 |
+
import pandas as pd
|
14 |
+
from datasets import Dataset
|
15 |
+
from tqdm import tqdm
|
16 |
+
import ast
|
17 |
+
import re
|
18 |
+
from collections import Counter
|
19 |
+
|
20 |
+
class CodeDataProcessor:
|
21 |
+
def __init__(self, output_dir: str = "processed_data"):
|
22 |
+
self.output_dir = Path(output_dir)
|
23 |
+
self.output_dir.mkdir(exist_ok=True)
|
24 |
+
self.logger = self._setup_logger()
|
25 |
+
|
26 |
+
def _setup_logger(self) -> logging.Logger:
|
27 |
+
"""Setup logging specific to code processing"""
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
logger.setLevel(logging.INFO)
|
30 |
+
handler = logging.StreamHandler()
|
31 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
32 |
+
handler.setFormatter(formatter)
|
33 |
+
logger.addHandler(handler)
|
34 |
+
return logger
|
35 |
+
|
36 |
+
def process_code(self, code: str, language: str = "python") -> Dict[str, Any]:
|
37 |
+
"""Process and analyze code snippet"""
|
38 |
+
try:
|
39 |
+
# Basic cleaning
|
40 |
+
code = self._clean_code(code)
|
41 |
+
|
42 |
+
# Parse AST if possible
|
43 |
+
ast_info = self._parse_ast(code, language)
|
44 |
+
|
45 |
+
# Extract code metrics
|
46 |
+
metrics = self._extract_code_metrics(code, ast_info)
|
47 |
+
|
48 |
+
# Identify patterns and anti-patterns
|
49 |
+
patterns = self._identify_patterns(code)
|
50 |
+
|
51 |
+
return {
|
52 |
+
"code": code,
|
53 |
+
"language": language,
|
54 |
+
"ast_info": ast_info,
|
55 |
+
"metrics": metrics,
|
56 |
+
"patterns": patterns
|
57 |
+
}
|
58 |
+
except Exception as e:
|
59 |
+
self.logger.warning(f"Error processing code: {str(e)}")
|
60 |
+
return {"error": str(e)}
|
61 |
+
|
62 |
+
def _clean_code(self, code: str) -> str:
|
63 |
+
"""Clean code by removing unnecessary whitespace and comments"""
|
64 |
+
# Remove trailing whitespace
|
65 |
+
code = code.strip()
|
66 |
+
|
67 |
+
# Remove empty lines
|
68 |
+
lines = [line.strip() for line in code.split('\n') if line.strip()]
|
69 |
+
code = '\n'.join(lines)
|
70 |
+
|
71 |
+
return code
|
72 |
+
|
73 |
+
def _parse_ast(self, code: str, language: str) -> Dict[str, Any]:
|
74 |
+
"""Parse code into AST and extract structure"""
|
75 |
+
try:
|
76 |
+
if language == "python":
|
77 |
+
tree = ast.parse(code)
|
78 |
+
return {
|
79 |
+
"num_functions": len([node for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)]),
|
80 |
+
"num_classes": len([node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]),
|
81 |
+
"complexity": self._calculate_complexity(tree)
|
82 |
+
}
|
83 |
+
return {}
|
84 |
+
except Exception as e:
|
85 |
+
return {"error": str(e)}
|
86 |
+
|
87 |
+
def _calculate_complexity(self, tree: ast.AST) -> int:
|
88 |
+
"""Calculate cyclomatic complexity"""
|
89 |
+
complexity = 1 # Start with 1 for the main program
|
90 |
+
for node in ast.walk(tree):
|
91 |
+
if isinstance(node, (ast.If, ast.For, ast.While, ast.Try, ast.ExceptHandler)):
|
92 |
+
complexity += 1
|
93 |
+
return complexity
|
94 |
+
|
95 |
+
def _extract_code_metrics(self, code: str, ast_info: Dict[str, Any]) -> Dict[str, Any]:
|
96 |
+
"""Extract various code metrics"""
|
97 |
+
metrics = {
|
98 |
+
"length": len(code),
|
99 |
+
"lines": len(code.split('\n')),
|
100 |
+
"tokens": len(code.split()),
|
101 |
+
"unique_tokens": len(set(code.split())),
|
102 |
+
"ast_complexity": ast_info.get("complexity", 0),
|
103 |
+
"function_count": ast_info.get("num_functions", 0),
|
104 |
+
"class_count": ast_info.get("num_classes", 0)
|
105 |
+
}
|
106 |
+
|
107 |
+
# Calculate token distribution
|
108 |
+
tokens = code.split()
|
109 |
+
token_dist = Counter(tokens)
|
110 |
+
metrics["token_distribution"] = token_dist.most_common(5)
|
111 |
+
|
112 |
+
return metrics
|
113 |
+
|
114 |
+
def _identify_patterns(self, code: str) -> Dict[str, List[str]]:
|
115 |
+
"""Identify common code patterns and anti-patterns"""
|
116 |
+
patterns = {
|
117 |
+
"design_patterns": [],
|
118 |
+
"anti_patterns": [],
|
119 |
+
"security_issues": []
|
120 |
+
}
|
121 |
+
|
122 |
+
# Look for common design patterns
|
123 |
+
if "class" in code and "def" in code:
|
124 |
+
patterns["design_patterns"].append("Class-based design")
|
125 |
+
|
126 |
+
# Look for anti-patterns
|
127 |
+
if "global" in code:
|
128 |
+
patterns["anti_patterns"].append("Global variables")
|
129 |
+
|
130 |
+
# Look for security issues
|
131 |
+
if "eval(" in code:
|
132 |
+
patterns["security_issues"].append("Eval usage")
|
133 |
+
|
134 |
+
return patterns
|
135 |
+
|
136 |
+
def process_dataset(self, dataset: Dataset, dataset_name: str) -> List[Dict[str, Any]]:
|
137 |
+
"""Process a complete dataset"""
|
138 |
+
processed = []
|
139 |
+
error_count = 0
|
140 |
+
|
141 |
+
self.logger.info(f"Processing {dataset_name} dataset with {len(dataset)} samples")
|
142 |
+
|
143 |
+
for idx, example in enumerate(tqdm(dataset, desc=f"Processing {dataset_name}")):
|
144 |
+
try:
|
145 |
+
processed_example = self._process_example(example, dataset_name)
|
146 |
+
processed.append(processed_example)
|
147 |
+
except Exception as e:
|
148 |
+
error_count += 1
|
149 |
+
self.logger.error(f"Error processing example {idx} in {dataset_name}: {str(e)}")
|
150 |
+
|
151 |
+
self.logger.info(f"Processed {len(processed)} examples")
|
152 |
+
self.logger.info(f"Encountered {error_count} errors")
|
153 |
+
|
154 |
+
return processed
|
155 |
+
|
156 |
+
def _process_example(self, example: Dict[str, Any], dataset_name: str) -> Dict[str, Any]:
|
157 |
+
"""Process a single example based on dataset type"""
|
158 |
+
if dataset_name == "CodeSearchNet":
|
159 |
+
return self._process_code_search_net(example)
|
160 |
+
elif dataset_name == "HumanEval":
|
161 |
+
return self._process_human_eval(example)
|
162 |
+
elif dataset_name == "MBPP":
|
163 |
+
return self._process_mbpp(example)
|
164 |
+
elif dataset_name == "Spider":
|
165 |
+
return self._process_spider(example)
|
166 |
+
elif dataset_name == "DeepFix":
|
167 |
+
return self._process_deep_fix(example)
|
168 |
+
elif dataset_name == "CodeXGLUE":
|
169 |
+
return self._process_codexglue(example)
|
170 |
+
else:
|
171 |
+
raise ValueError(f"Unknown dataset: {dataset_name}")
|
172 |
+
|
173 |
+
def _process_code_search_net(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
174 |
+
"""Process CodeSearchNet example"""
|
175 |
+
return {
|
176 |
+
"code": example["code"].strip(),
|
177 |
+
"docstring": example["docstring"].strip(),
|
178 |
+
"language": example["language"],
|
179 |
+
"function_name": example["function_name"],
|
180 |
+
"code_analysis": self.process_code(example["code"]) # Reuse code processing
|
181 |
+
}
|
182 |
+
|
183 |
+
def _process_human_eval(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
184 |
+
"""Process HumanEval example"""
|
185 |
+
return {
|
186 |
+
"task_id": example["task_id"],
|
187 |
+
"prompt": example["prompt"].strip(),
|
188 |
+
"solution": example["canonical_solution"].strip(),
|
189 |
+
"test": example["test"].strip(),
|
190 |
+
"entry_point": example["entry_point"],
|
191 |
+
"code_analysis": self.process_code(example["canonical_solution"]) # Reuse code processing
|
192 |
+
}
|
193 |
+
|
194 |
+
def _process_mbpp(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
195 |
+
"""Process MBPP example"""
|
196 |
+
return {
|
197 |
+
"task_id": example["task_id"],
|
198 |
+
"problem": example["text"].strip(),
|
199 |
+
"solution": example["code"].strip(),
|
200 |
+
"test_list": example["test_list"],
|
201 |
+
"challenge_test_list": example["challenge_test_list"],
|
202 |
+
"code_analysis": self.process_code(example["code"]) # Reuse code processing
|
203 |
+
}
|
204 |
+
|
205 |
+
def _process_spider(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
206 |
+
"""Process Spider example"""
|
207 |
+
return {
|
208 |
+
"query": example["query"].strip(),
|
209 |
+
"question": example["question"].strip(),
|
210 |
+
"db_id": example["db_id"],
|
211 |
+
"sql": example["sql"].strip(),
|
212 |
+
"code_analysis": self.process_code(example["sql"]) # Reuse code processing
|
213 |
+
}
|
214 |
+
|
215 |
+
def _process_deep_fix(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
216 |
+
"""Process DeepFix example"""
|
217 |
+
return {
|
218 |
+
"original_code": example["code"].strip(),
|
219 |
+
"fixed_code": example["fixed_code"].strip(),
|
220 |
+
"error_type": example["error_type"],
|
221 |
+
"code_analysis": self.process_code(example["fixed_code"]) # Reuse code processing
|
222 |
+
}
|
223 |
+
|
224 |
+
def _process_codexglue(self, example: Dict[str, Any]) -> Dict[str, Any]:
|
225 |
+
"""Process CodeXGLUE example"""
|
226 |
+
return {
|
227 |
+
"code": example["code"].strip(),
|
228 |
+
"docstring": example["docstring"].strip(),
|
229 |
+
"task": example["task"],
|
230 |
+
"language": example["language"],
|
231 |
+
"code_analysis": self.process_code(example["code"]) # Reuse code processing
|
232 |
+
}
|
233 |
+
|
234 |
+
def save_to_jsonl(self, data: List[Dict[str, Any]], filename: str) -> Path:
|
235 |
+
"""Save processed data to JSONL file"""
|
236 |
+
filepath = self.output_dir / filename
|
237 |
+
with jsonlines.open(filepath, mode='w') as writer:
|
238 |
+
writer.write_all(data)
|
239 |
+
self.logger.info(f"Saved data to {filepath}")
|
240 |
+
return filepath
|
241 |
+
|
242 |
+
def print_sample(self, data: List[Dict[str, Any]], count: int = 3):
|
243 |
+
"""Print sample of processed data"""
|
244 |
+
self.logger.info("\nSample data:")
|
245 |
+
for i, example in enumerate(data[:count]):
|
246 |
+
self.logger.info(f"\nSample {i+1}:")
|
247 |
+
self.logger.info(json.dumps(example, indent=2))
|
248 |
+
|
249 |
+
def print_memory_usage(self):
|
250 |
+
"""Print current memory usage"""
|
251 |
+
process = psutil.Process()
|
252 |
+
memory_info = process.memory_info()
|
253 |
+
self.logger.info(f"Current memory usage: {memory_info.rss / 1024 / 1024:.2f} MB")
|