Delete cotton_app.py
Browse files- cotton_app.py +0 -39
cotton_app.py
DELETED
@@ -1,39 +0,0 @@
|
|
1 |
-
import tensorflow as tf
|
2 |
-
model = tf.keras.models.load_model('cotton_crop.h5')
|
3 |
-
import streamlit as st
|
4 |
-
st.write("""
|
5 |
-
# Cotton crop identification
|
6 |
-
"""
|
7 |
-
)
|
8 |
-
#st.write("This is a simple image classification web app to predict rock-paper-scissor hand sign")
|
9 |
-
file = st.file_uploader("Please upload an image file", type=["jpg", "png"])
|
10 |
-
|
11 |
-
import cv2
|
12 |
-
from PIL import Image, ImageOps
|
13 |
-
import numpy as np
|
14 |
-
def import_and_predict(image_data, model):
|
15 |
-
|
16 |
-
size = (300,300)
|
17 |
-
image = ImageOps.fit(image_data, size, Image.ANTIALIAS)
|
18 |
-
image = np.asarray(image)
|
19 |
-
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
20 |
-
img_resize = (cv2.resize(img, dsize=(300, 300), interpolation=cv2.INTER_CUBIC))/255.
|
21 |
-
|
22 |
-
img_reshape = img_resize[np.newaxis,...]
|
23 |
-
|
24 |
-
prediction = model.predict(img_reshape)
|
25 |
-
|
26 |
-
return prediction
|
27 |
-
if file is None:
|
28 |
-
st.text("Please upload an image file")
|
29 |
-
else:
|
30 |
-
image = Image.open(file)
|
31 |
-
st.image(image, use_column_width=True)
|
32 |
-
prediction = import_and_predict(image, model)
|
33 |
-
|
34 |
-
# if np.argmax(prediction) == 0:
|
35 |
-
if prediction[0][0]==1.0:
|
36 |
-
st.write("Cotton crop")
|
37 |
-
else:
|
38 |
-
st.write("Not a cotton crop")
|
39 |
-
st.write(prediction)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|