# Copyright (c) OpenMMLab. All rights reserved. import argparse import base64 from os import path as osp import mmcv import mmengine import numpy as np from nuimages import NuImages from nuimages.utils.utils import mask_decode, name_to_index_mapping nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier') NAME_MAPPING = { 'movable_object.barrier': 'barrier', 'vehicle.bicycle': 'bicycle', 'vehicle.bus.bendy': 'bus', 'vehicle.bus.rigid': 'bus', 'vehicle.car': 'car', 'vehicle.construction': 'construction_vehicle', 'vehicle.motorcycle': 'motorcycle', 'human.pedestrian.adult': 'pedestrian', 'human.pedestrian.child': 'pedestrian', 'human.pedestrian.construction_worker': 'pedestrian', 'human.pedestrian.police_officer': 'pedestrian', 'movable_object.trafficcone': 'traffic_cone', 'vehicle.trailer': 'trailer', 'vehicle.truck': 'truck', } def parse_args(): parser = argparse.ArgumentParser(description='Data converter arg parser') parser.add_argument( '--data-root', type=str, default='./data/nuimages', help='specify the root path of dataset') parser.add_argument( '--version', type=str, nargs='+', default=['v1.0-mini'], required=False, help='specify the dataset version') parser.add_argument( '--out-dir', type=str, default='./data/nuimages/annotations/', required=False, help='path to save the exported json') parser.add_argument( '--nproc', type=int, default=4, required=False, help='workers to process semantic masks') parser.add_argument('--extra-tag', type=str, default='nuimages') args = parser.parse_args() return args def get_img_annos(nuim, img_info, cat2id, out_dir, data_root, seg_root): """Get semantic segmentation map for an image. Args: nuim (obj:`NuImages`): NuImages dataset object img_info (dict): Meta information of img Returns: np.ndarray: Semantic segmentation map of the image """ sd_token = img_info['token'] image_id = img_info['id'] name_to_index = name_to_index_mapping(nuim.category) # Get image data. width, height = img_info['width'], img_info['height'] semseg_mask = np.zeros((height, width)).astype('uint8') # Load stuff / surface regions. surface_anns = [ o for o in nuim.surface_ann if o['sample_data_token'] == sd_token ] # Draw stuff / surface regions. for ann in surface_anns: # Get color and mask. category_token = ann['category_token'] category_name = nuim.get('category', category_token)['name'] if ann['mask'] is None: continue mask = mask_decode(ann['mask']) # Draw mask for semantic segmentation. semseg_mask[mask == 1] = name_to_index[category_name] # Load object instances. object_anns = [ o for o in nuim.object_ann if o['sample_data_token'] == sd_token ] # Sort by token to ensure that objects always appear in the # instance mask in the same order. object_anns = sorted(object_anns, key=lambda k: k['token']) # Draw object instances. # The 0 index is reserved for background; thus, the instances # should start from index 1. annotations = [] for i, ann in enumerate(object_anns, start=1): # Get color, box, mask and name. category_token = ann['category_token'] category_name = nuim.get('category', category_token)['name'] if ann['mask'] is None: continue mask = mask_decode(ann['mask']) # Draw masks for semantic segmentation and instance segmentation. semseg_mask[mask == 1] = name_to_index[category_name] if category_name in NAME_MAPPING: cat_name = NAME_MAPPING[category_name] cat_id = cat2id[cat_name] x_min, y_min, x_max, y_max = ann['bbox'] # encode calibrated instance mask mask_anno = dict() mask_anno['counts'] = base64.b64decode( ann['mask']['counts']).decode() mask_anno['size'] = ann['mask']['size'] data_anno = dict( image_id=image_id, category_id=cat_id, bbox=[x_min, y_min, x_max - x_min, y_max - y_min], area=(x_max - x_min) * (y_max - y_min), segmentation=mask_anno, iscrowd=0) annotations.append(data_anno) # after process, save semantic masks img_filename = img_info['file_name'] seg_filename = img_filename.replace('jpg', 'png') seg_filename = osp.join(seg_root, seg_filename) mmcv.imwrite(semseg_mask, seg_filename) return annotations, np.max(semseg_mask) def export_nuim_to_coco(nuim, data_root, out_dir, extra_tag, version, nproc): print('Process category information') categories = [] categories = [ dict(id=nus_categories.index(cat_name), name=cat_name) for cat_name in nus_categories ] cat2id = {k_v['name']: k_v['id'] for k_v in categories} images = [] print('Process image meta information...') for sample_info in mmengine.track_iter_progress(nuim.sample_data): if sample_info['is_key_frame']: img_idx = len(images) images.append( dict( id=img_idx, token=sample_info['token'], file_name=sample_info['filename'], width=sample_info['width'], height=sample_info['height'])) seg_root = f'{out_dir}semantic_masks' mmengine.mkdir_or_exist(seg_root) mmengine.mkdir_or_exist(osp.join(data_root, 'calibrated')) global process_img_anno def process_img_anno(img_info): single_img_annos, max_cls_id = get_img_annos(nuim, img_info, cat2id, out_dir, data_root, seg_root) return single_img_annos, max_cls_id print('Process img annotations...') if nproc > 1: outputs = mmengine.track_parallel_progress( process_img_anno, images, nproc=nproc) else: outputs = [] for img_info in mmengine.track_iter_progress(images): outputs.append(process_img_anno(img_info)) # Determine the index of object annotation print('Process annotation information...') annotations = [] max_cls_ids = [] for single_img_annos, max_cls_id in outputs: max_cls_ids.append(max_cls_id) for img_anno in single_img_annos: img_anno.update(id=len(annotations)) annotations.append(img_anno) max_cls_id = max(max_cls_ids) print(f'Max ID of class in the semantic map: {max_cls_id}') coco_format_json = dict( images=images, annotations=annotations, categories=categories) mmengine.mkdir_or_exist(out_dir) out_file = osp.join(out_dir, f'{extra_tag}_{version}.json') print(f'Annotation dumped to {out_file}') mmengine.dump(coco_format_json, out_file) def main(): args = parse_args() for version in args.version: nuim = NuImages( dataroot=args.data_root, version=version, verbose=True, lazy=True) export_nuim_to_coco(nuim, args.data_root, args.out_dir, args.extra_tag, version, args.nproc) if __name__ == '__main__': main()