import numpy as np import pytest import torch from mmengine.structures import InstanceData from mmdet3d.evaluation.metrics import KittiMetric from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes data_root = 'tests/data/kitti' def _init_evaluate_input(): metainfo = dict(sample_idx=0) predictions = Det3DDataSample() pred_instances_3d = InstanceData() pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes( torch.tensor( [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]])) pred_instances_3d.scores_3d = torch.Tensor([0.9]) pred_instances_3d.labels_3d = torch.Tensor([0]) predictions.pred_instances_3d = pred_instances_3d predictions.pred_instances = InstanceData() predictions.set_metainfo(metainfo) predictions = predictions.to_dict() return {}, [predictions] def _init_multi_modal_evaluate_input(): metainfo = dict(sample_idx=0) predictions = Det3DDataSample() pred_instances_3d = InstanceData() pred_instances = InstanceData() pred_instances.bboxes = torch.tensor([[712.4, 143, 810.7, 307.92]]) pred_instances.scores = torch.Tensor([0.9]) pred_instances.labels = torch.Tensor([0]) pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes( torch.tensor( [[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]])) pred_instances_3d.scores_3d = torch.Tensor([0.9]) pred_instances_3d.labels_3d = torch.Tensor([0]) predictions.pred_instances_3d = pred_instances_3d predictions.pred_instances = pred_instances predictions.set_metainfo(metainfo) predictions = predictions.to_dict() return {}, [predictions] def test_multi_modal_kitti_metric(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') kittimetric = KittiMetric( data_root + '/kitti_infos_train.pkl', metric=['mAP']) kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car']) data_batch, predictions = _init_multi_modal_evaluate_input() kittimetric.process(data_batch, predictions) ap_dict = kittimetric.compute_metrics(kittimetric.results) assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_BEV_AP11_easy'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_2D_AP11_easy'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_easy'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_moderate'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_hard'], 3.0303030303030307) def test_kitti_metric_mAP(): if not torch.cuda.is_available(): pytest.skip('test requires GPU and torch+cuda') kittimetric = KittiMetric( data_root + '/kitti_infos_train.pkl', metric=['mAP']) kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car']) data_batch, predictions = _init_evaluate_input() kittimetric.process(data_batch, predictions) ap_dict = kittimetric.compute_metrics(kittimetric.results) assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'], 3.0303030303030307) assert np.isclose( ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_moderate'], 3.0303030303030307) assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_hard'], 3.0303030303030307)