_base_ = ['../../../configs/_base_/default_runtime.py'] custom_imports = dict(imports=['projects.TR3D.tr3d']) model = dict( type='MinkSingleStage3DDetector', data_preprocessor=dict(type='Det3DDataPreprocessor'), backbone=dict( type='TR3DMinkResNet', in_channels=3, depth=34, norm='batch', num_planes=(64, 128, 128, 128)), neck=dict( type='TR3DNeck', in_channels=(64, 128, 128, 128), out_channels=128), bbox_head=dict( type='TR3DHead', in_channels=128, voxel_size=0.01, pts_center_threshold=6, num_reg_outs=6), train_cfg=dict(), test_cfg=dict(nms_pre=1000, iou_thr=0.5, score_thr=0.01)) optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.001, weight_decay=0.0001), clip_grad=dict(max_norm=10, norm_type=2)) # learning rate param_scheduler = dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)] # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')