import torch from torch import nn from torch.autograd import Function from .voxel_layer import (dynamic_point_to_voxel_backward, dynamic_point_to_voxel_forward) class _dynamic_scatter(Function): @staticmethod def forward(ctx, feats, coors, reduce_type='max'): """convert kitti points(N, >=3) to voxels. Args: feats: [N, C] float tensor. points features to be reduced into voxels. coors: [N, ndim] int tensor. corresponding voxel coordinates (specifically multi-dim voxel index) of each points. reduce_type: str. reduce op. support 'max', 'sum' and 'mean' Returns: tuple voxel_feats: [M, C] float tensor. reduced features. input features that shares the same voxel coordinates are reduced to one row coordinates: [M, ndim] int tensor, voxel coordinates. """ results = dynamic_point_to_voxel_forward(feats, coors, reduce_type) (voxel_feats, voxel_coors, point2voxel_map, voxel_points_count) = results ctx.reduce_type = reduce_type ctx.save_for_backward(feats, voxel_feats, point2voxel_map, voxel_points_count) ctx.mark_non_differentiable(voxel_coors) return voxel_feats, voxel_coors @staticmethod def backward(ctx, grad_voxel_feats, grad_voxel_coors=None): (feats, voxel_feats, point2voxel_map, voxel_points_count) = ctx.saved_tensors grad_feats = torch.zeros_like(feats) # TODO: whether to use index put or use cuda_backward # To use index put, need point to voxel index dynamic_point_to_voxel_backward( grad_feats, grad_voxel_feats.contiguous(), feats, voxel_feats, point2voxel_map, voxel_points_count, ctx.reduce_type, ) return grad_feats, None, None dynamic_scatter = _dynamic_scatter.apply class DynamicScatter(nn.Module): def __init__(self, voxel_size, point_cloud_range, average_points: bool): super(DynamicScatter, self).__init__() """Scatters points into voxels, used in the voxel encoder with dynamic voxelization **Note**: The CPU and GPU implementation get the same output, but have numerical difference after summation and division (e.g., 5e-7). Args: average_points (bool): whether to use avg pooling to scatter points into voxel voxel_size (list): list [x, y, z] size of three dimension point_cloud_range (list): [x_min, y_min, z_min, x_max, y_max, z_max] """ self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range self.average_points = average_points def forward_single(self, points, coors): reduce = 'mean' if self.average_points else 'max' return dynamic_scatter(points.contiguous(), coors.contiguous(), reduce) def forward(self, points, coors): """ Args: input: NC points """ if coors.size(-1) == 3: return self.forward_single(points, coors) else: batch_size = coors[-1, 0] + 1 voxels, voxel_coors = [], [] for i in range(batch_size): inds = torch.where(coors[:, 0] == i) voxel, voxel_coor = self.forward_single( points[inds], coors[inds][:, 1:]) coor_pad = nn.functional.pad( voxel_coor, (1, 0), mode='constant', value=i) voxel_coors.append(coor_pad) voxels.append(voxel) features = torch.cat(voxels, dim=0) feature_coors = torch.cat(voxel_coors, dim=0) return features, feature_coors def __repr__(self): tmpstr = self.__class__.__name__ + '(' tmpstr += 'voxel_size=' + str(self.voxel_size) tmpstr += ', point_cloud_range=' + str(self.point_cloud_range) tmpstr += ', average_points=' + str(self.average_points) tmpstr += ')' return tmpstr