# modify from https://github.com/mit-han-lab/bevfusion from typing import Tuple import torch from torch import nn from mmdet3d.registry import MODELS from .ops import bev_pool def gen_dx_bx(xbound, ybound, zbound): dx = torch.Tensor([row[2] for row in [xbound, ybound, zbound]]) bx = torch.Tensor( [row[0] + row[2] / 2.0 for row in [xbound, ybound, zbound]]) nx = torch.LongTensor([(row[1] - row[0]) / row[2] for row in [xbound, ybound, zbound]]) return dx, bx, nx class BaseViewTransform(nn.Module): def __init__( self, in_channels: int, out_channels: int, image_size: Tuple[int, int], feature_size: Tuple[int, int], xbound: Tuple[float, float, float], ybound: Tuple[float, float, float], zbound: Tuple[float, float, float], dbound: Tuple[float, float, float], ) -> None: super().__init__() self.in_channels = in_channels self.image_size = image_size self.feature_size = feature_size self.xbound = xbound self.ybound = ybound self.zbound = zbound self.dbound = dbound dx, bx, nx = gen_dx_bx(self.xbound, self.ybound, self.zbound) self.dx = nn.Parameter(dx, requires_grad=False) self.bx = nn.Parameter(bx, requires_grad=False) self.nx = nn.Parameter(nx, requires_grad=False) self.C = out_channels self.frustum = self.create_frustum() self.D = self.frustum.shape[0] self.fp16_enabled = False def create_frustum(self): iH, iW = self.image_size fH, fW = self.feature_size ds = ( torch.arange(*self.dbound, dtype=torch.float).view(-1, 1, 1).expand(-1, fH, fW)) D, _, _ = ds.shape xs = ( torch.linspace(0, iW - 1, fW, dtype=torch.float).view(1, 1, fW).expand(D, fH, fW)) ys = ( torch.linspace(0, iH - 1, fH, dtype=torch.float).view(1, fH, 1).expand(D, fH, fW)) frustum = torch.stack((xs, ys, ds), -1) return nn.Parameter(frustum, requires_grad=False) def get_geometry( self, camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, **kwargs, ): B, N, _ = camera2lidar_trans.shape # undo post-transformation # B x N x D x H x W x 3 points = self.frustum - post_trans.view(B, N, 1, 1, 1, 3) points = ( torch.inverse(post_rots).view(B, N, 1, 1, 1, 3, 3).matmul(points.unsqueeze(-1))) # cam_to_lidar points = torch.cat( ( points[:, :, :, :, :, :2] * points[:, :, :, :, :, 2:3], points[:, :, :, :, :, 2:3], ), 5, ) combine = camera2lidar_rots.matmul(torch.inverse(intrins)) points = combine.view(B, N, 1, 1, 1, 3, 3).matmul(points).squeeze(-1) points += camera2lidar_trans.view(B, N, 1, 1, 1, 3) if 'extra_rots' in kwargs: extra_rots = kwargs['extra_rots'] points = ( extra_rots.view(B, 1, 1, 1, 1, 3, 3).repeat(1, N, 1, 1, 1, 1, 1).matmul( points.unsqueeze(-1)).squeeze(-1)) if 'extra_trans' in kwargs: extra_trans = kwargs['extra_trans'] points += extra_trans.view(B, 1, 1, 1, 1, 3).repeat(1, N, 1, 1, 1, 1) return points def get_cam_feats(self, x): raise NotImplementedError def bev_pool(self, geom_feats, x): B, N, D, H, W, C = x.shape Nprime = B * N * D * H * W # flatten x x = x.reshape(Nprime, C) # flatten indices geom_feats = ((geom_feats - (self.bx - self.dx / 2.0)) / self.dx).long() geom_feats = geom_feats.view(Nprime, 3) batch_ix = torch.cat([ torch.full([Nprime // B, 1], ix, device=x.device, dtype=torch.long) for ix in range(B) ]) geom_feats = torch.cat((geom_feats, batch_ix), 1) # filter out points that are outside box kept = ((geom_feats[:, 0] >= 0) & (geom_feats[:, 0] < self.nx[0]) & (geom_feats[:, 1] >= 0) & (geom_feats[:, 1] < self.nx[1]) & (geom_feats[:, 2] >= 0) & (geom_feats[:, 2] < self.nx[2])) x = x[kept] geom_feats = geom_feats[kept] x = bev_pool(x, geom_feats, B, self.nx[2], self.nx[0], self.nx[1]) # collapse Z final = torch.cat(x.unbind(dim=2), 1) return final def forward( self, img, points, lidar2image, camera_intrinsics, camera2lidar, img_aug_matrix, lidar_aug_matrix, metas, **kwargs, ): intrins = camera_intrinsics[..., :3, :3] post_rots = img_aug_matrix[..., :3, :3] post_trans = img_aug_matrix[..., :3, 3] camera2lidar_rots = camera2lidar[..., :3, :3] camera2lidar_trans = camera2lidar[..., :3, 3] extra_rots = lidar_aug_matrix[..., :3, :3] extra_trans = lidar_aug_matrix[..., :3, 3] geom = self.get_geometry( camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, extra_rots=extra_rots, extra_trans=extra_trans, ) x = self.get_cam_feats(img) x = self.bev_pool(geom, x) return x @MODELS.register_module() class LSSTransform(BaseViewTransform): def __init__( self, in_channels: int, out_channels: int, image_size: Tuple[int, int], feature_size: Tuple[int, int], xbound: Tuple[float, float, float], ybound: Tuple[float, float, float], zbound: Tuple[float, float, float], dbound: Tuple[float, float, float], downsample: int = 1, ) -> None: super().__init__( in_channels=in_channels, out_channels=out_channels, image_size=image_size, feature_size=feature_size, xbound=xbound, ybound=ybound, zbound=zbound, dbound=dbound, ) self.depthnet = nn.Conv2d(in_channels, self.D + self.C, 1) if downsample > 1: assert downsample == 2, downsample self.downsample = nn.Sequential( nn.Conv2d( out_channels, out_channels, 3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), nn.Conv2d( out_channels, out_channels, 3, stride=downsample, padding=1, bias=False, ), nn.BatchNorm2d(out_channels), nn.ReLU(True), nn.Conv2d( out_channels, out_channels, 3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), ) else: self.downsample = nn.Identity() def get_cam_feats(self, x): B, N, C, fH, fW = x.shape x = x.view(B * N, C, fH, fW) x = self.depthnet(x) depth = x[:, :self.D].softmax(dim=1) x = depth.unsqueeze(1) * x[:, self.D:(self.D + self.C)].unsqueeze(2) x = x.view(B, N, self.C, self.D, fH, fW) x = x.permute(0, 1, 3, 4, 5, 2) return x def forward(self, *args, **kwargs): x = super().forward(*args, **kwargs) x = self.downsample(x) return x class BaseDepthTransform(BaseViewTransform): def forward( self, img, points, lidar2image, cam_intrinsic, camera2lidar, img_aug_matrix, lidar_aug_matrix, metas, **kwargs, ): intrins = cam_intrinsic[..., :3, :3] post_rots = img_aug_matrix[..., :3, :3] post_trans = img_aug_matrix[..., :3, 3] camera2lidar_rots = camera2lidar[..., :3, :3] camera2lidar_trans = camera2lidar[..., :3, 3] batch_size = len(points) depth = torch.zeros(batch_size, img.shape[1], 1, *self.image_size).to(points[0].device) for b in range(batch_size): cur_coords = points[b][:, :3] cur_img_aug_matrix = img_aug_matrix[b] cur_lidar_aug_matrix = lidar_aug_matrix[b] cur_lidar2image = lidar2image[b] # inverse aug cur_coords -= cur_lidar_aug_matrix[:3, 3] cur_coords = torch.inverse(cur_lidar_aug_matrix[:3, :3]).matmul( cur_coords.transpose(1, 0)) # lidar2image cur_coords = cur_lidar2image[:, :3, :3].matmul(cur_coords) cur_coords += cur_lidar2image[:, :3, 3].reshape(-1, 3, 1) # get 2d coords dist = cur_coords[:, 2, :] cur_coords[:, 2, :] = torch.clamp(cur_coords[:, 2, :], 1e-5, 1e5) cur_coords[:, :2, :] /= cur_coords[:, 2:3, :] # imgaug cur_coords = cur_img_aug_matrix[:, :3, :3].matmul(cur_coords) cur_coords += cur_img_aug_matrix[:, :3, 3].reshape(-1, 3, 1) cur_coords = cur_coords[:, :2, :].transpose(1, 2) # normalize coords for grid sample cur_coords = cur_coords[..., [1, 0]] on_img = ((cur_coords[..., 0] < self.image_size[0]) & (cur_coords[..., 0] >= 0) & (cur_coords[..., 1] < self.image_size[1]) & (cur_coords[..., 1] >= 0)) for c in range(on_img.shape[0]): masked_coords = cur_coords[c, on_img[c]].long() masked_dist = dist[c, on_img[c]] depth = depth.to(masked_dist.dtype) depth[b, c, 0, masked_coords[:, 0], masked_coords[:, 1]] = masked_dist extra_rots = lidar_aug_matrix[..., :3, :3] extra_trans = lidar_aug_matrix[..., :3, 3] geom = self.get_geometry( camera2lidar_rots, camera2lidar_trans, intrins, post_rots, post_trans, extra_rots=extra_rots, extra_trans=extra_trans, ) x = self.get_cam_feats(img, depth) x = self.bev_pool(geom, x) return x @MODELS.register_module() class DepthLSSTransform(BaseDepthTransform): def __init__( self, in_channels: int, out_channels: int, image_size: Tuple[int, int], feature_size: Tuple[int, int], xbound: Tuple[float, float, float], ybound: Tuple[float, float, float], zbound: Tuple[float, float, float], dbound: Tuple[float, float, float], downsample: int = 1, ) -> None: """Compared with `LSSTransform`, `DepthLSSTransform` adds sparse depth information from lidar points into the inputs of the `depthnet`.""" super().__init__( in_channels=in_channels, out_channels=out_channels, image_size=image_size, feature_size=feature_size, xbound=xbound, ybound=ybound, zbound=zbound, dbound=dbound, ) self.dtransform = nn.Sequential( nn.Conv2d(1, 8, 1), nn.BatchNorm2d(8), nn.ReLU(True), nn.Conv2d(8, 32, 5, stride=4, padding=2), nn.BatchNorm2d(32), nn.ReLU(True), nn.Conv2d(32, 64, 5, stride=2, padding=2), nn.BatchNorm2d(64), nn.ReLU(True), ) self.depthnet = nn.Sequential( nn.Conv2d(in_channels + 64, in_channels, 3, padding=1), nn.BatchNorm2d(in_channels), nn.ReLU(True), nn.Conv2d(in_channels, in_channels, 3, padding=1), nn.BatchNorm2d(in_channels), nn.ReLU(True), nn.Conv2d(in_channels, self.D + self.C, 1), ) if downsample > 1: assert downsample == 2, downsample self.downsample = nn.Sequential( nn.Conv2d( out_channels, out_channels, 3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), nn.Conv2d( out_channels, out_channels, 3, stride=downsample, padding=1, bias=False, ), nn.BatchNorm2d(out_channels), nn.ReLU(True), nn.Conv2d( out_channels, out_channels, 3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(True), ) else: self.downsample = nn.Identity() def get_cam_feats(self, x, d): B, N, C, fH, fW = x.shape d = d.view(B * N, *d.shape[2:]) x = x.view(B * N, C, fH, fW) d = self.dtransform(d) x = torch.cat([d, x], dim=1) x = self.depthnet(x) depth = x[:, :self.D].softmax(dim=1) x = depth.unsqueeze(1) * x[:, self.D:(self.D + self.C)].unsqueeze(2) x = x.view(B, N, self.C, self.D, fH, fW) x = x.permute(0, 1, 3, 4, 5, 2) return x def forward(self, *args, **kwargs): x = super().forward(*args, **kwargs) x = self.downsample(x) return x