# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import warnings from typing import Dict, List, Optional, Sequence, Union import mmcv import mmengine import numpy as np from mmengine.dataset import Compose from mmengine.fileio import (get_file_backend, isdir, join_path, list_dir_or_file) from mmengine.infer.infer import ModelType from mmengine.structures import InstanceData from mmdet3d.registry import INFERENCERS from mmdet3d.utils import ConfigType from .base_3d_inferencer import Base3DInferencer InstanceList = List[InstanceData] InputType = Union[str, np.ndarray] InputsType = Union[InputType, Sequence[InputType]] PredType = Union[InstanceData, InstanceList] ImgType = Union[np.ndarray, Sequence[np.ndarray]] ResType = Union[Dict, List[Dict], InstanceData, List[InstanceData]] @INFERENCERS.register_module(name='det3d-multi_modality') @INFERENCERS.register_module() class MultiModalityDet3DInferencer(Base3DInferencer): """The inferencer of multi-modality detection. Args: model (str, optional): Path to the config file or the model name defined in metafile. For example, it could be "pointpillars_kitti-3class" or "configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py". # noqa: E501 If model is not specified, user must provide the `weights` saved by MMEngine which contains the config string. Defaults to None. weights (str, optional): Path to the checkpoint. If it is not specified and model is a model name of metafile, the weights will be loaded from metafile. Defaults to None. device (str, optional): Device to run inference. If None, the available device will be automatically used. Defaults to None. scope (str): The scope of registry. Defaults to 'mmdet3d'. palette (str): The palette of visualization. Defaults to 'none'. """ def __init__(self, model: Union[ModelType, str, None] = None, weights: Optional[str] = None, device: Optional[str] = None, scope: str = 'mmdet3d', palette: str = 'none') -> None: # A global counter tracking the number of frames processed, for # naming of the output results self.num_visualized_frames = 0 super(MultiModalityDet3DInferencer, self).__init__( model=model, weights=weights, device=device, scope=scope, palette=palette) def _inputs_to_list(self, inputs: Union[dict, list], cam_type: str = 'CAM2', **kwargs) -> list: """Preprocess the inputs to a list. Preprocess inputs to a list according to its type: - list or tuple: return inputs - dict: the value with key 'points' is - Directory path: return all files in the directory - other cases: return a list containing the string. The string could be a path to file, a url or other types of string according to the task. Args: inputs (Union[dict, list]): Inputs for the inferencer. Returns: list: List of input for the :meth:`preprocess`. """ if isinstance(inputs, dict): assert 'infos' in inputs infos = inputs.pop('infos') if isinstance(inputs['img'], str): img, pcd = inputs['img'], inputs['points'] backend = get_file_backend(img) if hasattr(backend, 'isdir') and isdir(img) and isdir(pcd): # Backends like HttpsBackend do not implement `isdir`, so # only those backends that implement `isdir` could accept # the inputs as a directory img_filename_list = list_dir_or_file( img, list_dir=False, suffix=['.png', '.jpg']) pcd_filename_list = list_dir_or_file( pcd, list_dir=False, suffix='.bin') assert len(img_filename_list) == len(pcd_filename_list) inputs = [{ 'img': join_path(img, img_filename), 'points': join_path(pcd, pcd_filename) } for pcd_filename, img_filename in zip( pcd_filename_list, img_filename_list)] if not isinstance(inputs, (list, tuple)): inputs = [inputs] # get cam2img, lidar2cam and lidar2img from infos info_list = mmengine.load(infos)['data_list'] assert len(info_list) == len(inputs) for index, input in enumerate(inputs): data_info = info_list[index] img_path = data_info['images'][cam_type]['img_path'] if isinstance(input['img'], str) and \ osp.basename(img_path) != osp.basename(input['img']): raise ValueError( f'the info file of {img_path} is not provided.') cam2img = np.asarray( data_info['images'][cam_type]['cam2img'], dtype=np.float32) lidar2cam = np.asarray( data_info['images'][cam_type]['lidar2cam'], dtype=np.float32) if 'lidar2img' in data_info['images'][cam_type]: lidar2img = np.asarray( data_info['images'][cam_type]['lidar2img'], dtype=np.float32) else: lidar2img = cam2img @ lidar2cam input['cam2img'] = cam2img input['lidar2cam'] = lidar2cam input['lidar2img'] = lidar2img elif isinstance(inputs, (list, tuple)): # get cam2img, lidar2cam and lidar2img from infos for input in inputs: assert 'infos' in input infos = input.pop('infos') info_list = mmengine.load(infos)['data_list'] assert len(info_list) == 1, 'Only support single sample' \ 'info in `.pkl`, when input is a list.' data_info = info_list[0] img_path = data_info['images'][cam_type]['img_path'] if isinstance(input['img'], str) and \ osp.basename(img_path) != osp.basename(input['img']): raise ValueError( f'the info file of {img_path} is not provided.') cam2img = np.asarray( data_info['images'][cam_type]['cam2img'], dtype=np.float32) lidar2cam = np.asarray( data_info['images'][cam_type]['lidar2cam'], dtype=np.float32) if 'lidar2img' in data_info['images'][cam_type]: lidar2img = np.asarray( data_info['images'][cam_type]['lidar2img'], dtype=np.float32) else: lidar2img = cam2img @ lidar2cam input['cam2img'] = cam2img input['lidar2cam'] = lidar2cam input['lidar2img'] = lidar2img return list(inputs) def _init_pipeline(self, cfg: ConfigType) -> Compose: """Initialize the test pipeline.""" pipeline_cfg = cfg.test_dataloader.dataset.pipeline load_point_idx = self._get_transform_idx(pipeline_cfg, 'LoadPointsFromFile') load_mv_img_idx = self._get_transform_idx( pipeline_cfg, 'LoadMultiViewImageFromFiles') if load_mv_img_idx != -1: warnings.warn( 'LoadMultiViewImageFromFiles is not supported yet in the ' 'multi-modality inferencer. Please remove it') # Now, we only support ``LoadImageFromFile`` as the image loader in the # original piepline. `LoadMultiViewImageFromFiles` is not supported # yet. load_img_idx = self._get_transform_idx(pipeline_cfg, 'LoadImageFromFile') if load_point_idx == -1 or load_img_idx == -1: raise ValueError( 'Both LoadPointsFromFile and LoadImageFromFile must ' 'be specified the pipeline, but LoadPointsFromFile is ' f'{load_point_idx == -1} and LoadImageFromFile is ' f'{load_img_idx}') load_cfg = pipeline_cfg[load_point_idx] self.coord_type, self.load_dim = load_cfg['coord_type'], load_cfg[ 'load_dim'] self.use_dim = list(range(load_cfg['use_dim'])) if isinstance( load_cfg['use_dim'], int) else load_cfg['use_dim'] load_point_args = pipeline_cfg[load_point_idx] load_point_args.pop('type') load_img_args = pipeline_cfg[load_img_idx] load_img_args.pop('type') load_idx = min(load_point_idx, load_img_idx) pipeline_cfg.pop(max(load_point_idx, load_img_idx)) pipeline_cfg[load_idx] = dict( type='MultiModalityDet3DInferencerLoader', load_point_args=load_point_args, load_img_args=load_img_args) return Compose(pipeline_cfg) def visualize(self, inputs: InputsType, preds: PredType, return_vis: bool = False, show: bool = False, wait_time: int = 0, draw_pred: bool = True, pred_score_thr: float = 0.3, no_save_vis: bool = False, img_out_dir: str = '', cam_type_dir: str = 'CAM2') -> Union[List[np.ndarray], None]: """Visualize predictions. Args: inputs (InputsType): Inputs for the inferencer. preds (PredType): Predictions of the model. return_vis (bool): Whether to return the visualization result. Defaults to False. show (bool): Whether to display the image in a popup window. Defaults to False. wait_time (float): The interval of show (s). Defaults to 0. draw_pred (bool): Whether to draw predicted bounding boxes. Defaults to True. no_save_vis (bool): Whether to save visualization results. pred_score_thr (float): Minimum score of bboxes to draw. Defaults to 0.3. img_out_dir (str): Output directory of visualization results. If left as empty, no file will be saved. Defaults to ''. Returns: List[np.ndarray] or None: Returns visualization results only if applicable. """ if no_save_vis is True: img_out_dir = '' if not show and img_out_dir == '' and not return_vis: return None if getattr(self, 'visualizer') is None: raise ValueError('Visualization needs the "visualizer" term' 'defined in the config, but got None.') results = [] for single_input, pred in zip(inputs, preds): points_input = single_input['points'] if isinstance(points_input, str): pts_bytes = mmengine.fileio.get(points_input) points = np.frombuffer(pts_bytes, dtype=np.float32) points = points.reshape(-1, self.load_dim) points = points[:, self.use_dim] pc_name = osp.basename(points_input).split('.bin')[0] pc_name = f'{pc_name}.png' elif isinstance(points_input, np.ndarray): points = points_input.copy() pc_num = str(self.num_visualized_frames).zfill(8) pc_name = f'{pc_num}.png' else: raise ValueError('Unsupported input type: ' f'{type(points_input)}') if img_out_dir != '' and show: o3d_save_path = osp.join(img_out_dir, 'vis_lidar', pc_name) mmengine.mkdir_or_exist(osp.dirname(o3d_save_path)) else: o3d_save_path = None img_input = single_input['img'] if isinstance(single_input['img'], str): img_bytes = mmengine.fileio.get(img_input) img = mmcv.imfrombytes(img_bytes) img = img[:, :, ::-1] img_name = osp.basename(img_input) elif isinstance(img_input, np.ndarray): img = img_input.copy() img_num = str(self.num_visualized_frames).zfill(8) img_name = f'{img_num}.jpg' else: raise ValueError('Unsupported input type: ' f'{type(img_input)}') out_file = osp.join(img_out_dir, 'vis_camera', cam_type_dir, img_name) if img_out_dir != '' else None data_input = dict(points=points, img=img) self.visualizer.add_datasample( pc_name, data_input, pred, show=show, wait_time=wait_time, draw_gt=False, draw_pred=draw_pred, pred_score_thr=pred_score_thr, o3d_save_path=o3d_save_path, out_file=out_file, vis_task='multi-modality_det', ) results.append(points) self.num_visualized_frames += 1 return results