# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from unittest import TestCase import mmengine import numpy as np import torch from mmengine.utils import is_list_of from mmdet3d.apis import LidarDet3DInferencer from mmdet3d.structures import Det3DDataSample class TestLidarDet3DInferencer(TestCase): def setUp(self): # init from alias self.inferencer = LidarDet3DInferencer('pointpillars_kitti-3class') def test_init(self): # init from metafile LidarDet3DInferencer('pointpillars_waymod5-3class') # init from cfg LidarDet3DInferencer( 'configs/pointpillars/pointpillars_hv_secfpn_8xb6-160e_kitti-3d-3class.py', # noqa weights= # noqa 'https://download.openmmlab.com/mmdetection3d/v1.0.0_models/pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class_20220301_150306-37dc2420.pth' # noqa ) def assert_predictions_equal(self, preds1, preds2): for pred1, pred2 in zip(preds1, preds2): if 'bboxes_3d' in pred1: self.assertTrue( np.allclose(pred1['bboxes_3d'], pred2['bboxes_3d'], 0.1)) if 'scores_3d' in pred1: self.assertTrue( np.allclose(pred1['scores_3d'], pred2['scores_3d'], 0.1)) if 'labels_3d' in pred1: self.assertTrue( np.allclose(pred1['labels_3d'], pred2['labels_3d'])) def test_call(self): if not torch.cuda.is_available(): return # single point cloud inputs = dict(points='tests/data/kitti/training/velodyne/000000.bin') res_path = self.inferencer(inputs, return_vis=True) # ndarray pts_bytes = mmengine.fileio.get(inputs['points']) points = np.frombuffer(pts_bytes, dtype=np.float32) points = points.reshape(-1, 4) points = points[:, :4] inputs = dict(points=points) res_ndarray = self.inferencer(inputs, return_vis=True) self.assert_predictions_equal(res_path['predictions'], res_ndarray['predictions']) self.assertIn('visualization', res_path) self.assertIn('visualization', res_ndarray) # multiple point clouds inputs = [ dict(points='tests/data/kitti/training/velodyne/000000.bin'), dict(points='tests/data/kitti/training/velodyne/000000.bin') ] res_path = self.inferencer(inputs, return_vis=True) # list of ndarray all_points = [] for p in inputs: pts_bytes = mmengine.fileio.get(p['points']) points = np.frombuffer(pts_bytes, dtype=np.float32) points = points.reshape(-1, 4) all_points.append(dict(points=points)) res_ndarray = self.inferencer(all_points, return_vis=True) self.assert_predictions_equal(res_path['predictions'], res_ndarray['predictions']) self.assertIn('visualization', res_path) self.assertIn('visualization', res_ndarray) # point cloud dir, test different batch sizes pc_dir = dict(points='tests/data/kitti/training/velodyne/') res_bs2 = self.inferencer(pc_dir, batch_size=2, return_vis=True) self.assertIn('visualization', res_bs2) self.assertIn('predictions', res_bs2) def test_visualize(self): if not torch.cuda.is_available(): return inputs = dict(points='tests/data/kitti/training/velodyne/000000.bin'), # img_out_dir with tempfile.TemporaryDirectory() as tmp_dir: self.inferencer(inputs, out_dir=tmp_dir) # TODO: For LiDAR-based detection, the saved image only exists when # show=True. # self.assertTrue(osp.exists(osp.join(tmp_dir, '000000.png'))) def test_postprocess(self): if not torch.cuda.is_available(): return # return_datasample inputs = dict(points='tests/data/kitti/training/velodyne/000000.bin') res = self.inferencer(inputs, return_datasamples=True) self.assertTrue(is_list_of(res['predictions'], Det3DDataSample)) # pred_out_dir with tempfile.TemporaryDirectory() as tmp_dir: res = self.inferencer(inputs, print_result=True, out_dir=tmp_dir) dumped_res = mmengine.load( osp.join(tmp_dir, 'preds', '000000.json')) self.assertEqual(res['predictions'][0], dumped_res)