_base_ = ['./detr3d_r101_gridmask.py'] custom_imports = dict(imports=['projects.DETR3D.detr3d']) # If point cloud range is changed, the models should also change their point # cloud range accordingly point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] voxel_size = [0.2, 0.2, 8] img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False) # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', 'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' ] input_modality = dict( use_lidar=False, use_camera=True, use_radar=False, use_map=False, use_external=False) dataset_type = 'NuScenesDataset' data_root = 'data/nuscenes/' test_transforms = [ dict( type='RandomResize3D', scale=(1600, 900), ratio_range=(1., 1.), keep_ratio=True) ] train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms train_pipeline = [ dict(type='LoadMultiViewImageFromFiles', to_float32=True, num_views=6), dict( type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True, with_attr_label=False), dict(type='MultiViewWrapper', transforms=train_transforms), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) ] metainfo = dict(classes=class_names) data_prefix = dict( pts='', CAM_FRONT='samples/CAM_FRONT', CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT', CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT', CAM_BACK='samples/CAM_BACK', CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT', CAM_BACK_LEFT='samples/CAM_BACK_LEFT') train_dataloader = dict( _delete_=True, batch_size=1, num_workers=4, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='CBGSDataset', dataset=dict( type=dataset_type, data_root=data_root, ann_file='nuscenes_infos_train.pkl', pipeline=train_pipeline, load_type='frame_based', metainfo=metainfo, modality=input_modality, test_mode=False, data_prefix=data_prefix, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR')))