|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from mmcv.cnn import Conv2d, Linear |
|
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead |
|
from mmdet.models.layers import NormedLinear |
|
from mmdet.models.layers.transformer import inverse_sigmoid |
|
from mmdet.models.utils import multi_apply |
|
from mmengine.model.weight_init import bias_init_with_prob |
|
from mmengine.structures import InstanceData |
|
|
|
from mmdet3d.registry import MODELS, TASK_UTILS |
|
from projects.PETR.petr.utils import normalize_bbox |
|
|
|
|
|
def pos2posemb3d(pos, num_pos_feats=128, temperature=10000): |
|
scale = 2 * math.pi |
|
pos = pos * scale |
|
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device) |
|
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) |
|
pos_x = pos[..., 0, None] / dim_t |
|
pos_y = pos[..., 1, None] / dim_t |
|
pos_z = pos[..., 2, None] / dim_t |
|
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), |
|
dim=-1).flatten(-2) |
|
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), |
|
dim=-1).flatten(-2) |
|
pos_z = torch.stack((pos_z[..., 0::2].sin(), pos_z[..., 1::2].cos()), |
|
dim=-1).flatten(-2) |
|
posemb = torch.cat((pos_y, pos_x, pos_z), dim=-1) |
|
return posemb |
|
|
|
|
|
@MODELS.register_module() |
|
class PETRHead(AnchorFreeHead): |
|
"""Implements the DETR transformer head. See `paper: End-to-End Object |
|
Detection with Transformers. |
|
|
|
<https://arxiv.org/pdf/2005.12872>`_ for details. |
|
Args: |
|
num_classes (int): Number of categories excluding the background. |
|
in_channels (int): Number of channels in the input feature map. |
|
num_query (int): Number of query in Transformer. |
|
num_reg_fcs (int, optional): Number of fully-connected layers used in |
|
`FFN`, which is then used for the regression head. Default 2. |
|
transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer. |
|
Default: None. |
|
sync_cls_avg_factor (bool): Whether to sync the avg_factor of |
|
all ranks. Default to False. |
|
positional_encoding (obj:`mmcv.ConfigDict`|dict): |
|
Config for position encoding. |
|
loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the |
|
classification loss. Default `CrossEntropyLoss`. |
|
loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the |
|
regression loss. Default `L1Loss`. |
|
loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the |
|
regression iou loss. Default `GIoULoss`. |
|
tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of |
|
transformer head. |
|
test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of |
|
transformer head. |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None |
|
""" |
|
_version = 2 |
|
|
|
def __init__(self, |
|
num_classes, |
|
in_channels, |
|
num_query=100, |
|
num_reg_fcs=2, |
|
transformer=None, |
|
sync_cls_avg_factor=False, |
|
positional_encoding=dict( |
|
type='SinePositionalEncoding', |
|
num_feats=128, |
|
normalize=True), |
|
code_weights=None, |
|
bbox_coder=None, |
|
loss_cls=dict( |
|
type='CrossEntropyLoss', |
|
bg_cls_weight=0.1, |
|
use_sigmoid=False, |
|
loss_weight=1.0, |
|
class_weight=1.0), |
|
loss_bbox=dict(type='L1Loss', loss_weight=5.0), |
|
loss_iou=dict(type='GIoULoss', loss_weight=2.0), |
|
train_cfg=dict( |
|
assigner=dict( |
|
type='HungarianAssigner', |
|
cls_cost=dict(type='ClassificationCost', weight=1.), |
|
reg_cost=dict(type='BBoxL1Cost', weight=5.0), |
|
iou_cost=dict( |
|
type='IoUCost', iou_mode='giou', weight=2.0))), |
|
test_cfg=dict(max_per_img=100), |
|
with_position=True, |
|
with_multiview=False, |
|
depth_step=0.8, |
|
depth_num=64, |
|
LID=False, |
|
depth_start=1, |
|
position_range=[-65, -65, -8.0, 65, 65, 8.0], |
|
init_cfg=None, |
|
normedlinear=False, |
|
**kwargs): |
|
|
|
|
|
|
|
if 'code_size' in kwargs: |
|
self.code_size = kwargs['code_size'] |
|
else: |
|
self.code_size = 10 |
|
if code_weights is not None: |
|
self.code_weights = code_weights |
|
else: |
|
self.code_weights = [ |
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2 |
|
] |
|
self.code_weights = self.code_weights[:self.code_size] |
|
self.bg_cls_weight = 0 |
|
self.sync_cls_avg_factor = sync_cls_avg_factor |
|
class_weight = loss_cls.get('class_weight', None) |
|
if class_weight is not None and (self.__class__ is PETRHead): |
|
assert isinstance(class_weight, float), 'Expected ' \ |
|
'class_weight to have type float. Found ' \ |
|
f'{type(class_weight)}.' |
|
|
|
|
|
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight) |
|
assert isinstance(bg_cls_weight, float), 'Expected ' \ |
|
'bg_cls_weight to have type float. Found ' \ |
|
f'{type(bg_cls_weight)}.' |
|
class_weight = torch.ones(num_classes + 1) * class_weight |
|
|
|
class_weight[num_classes] = bg_cls_weight |
|
loss_cls.update({'class_weight': class_weight}) |
|
if 'bg_cls_weight' in loss_cls: |
|
loss_cls.pop('bg_cls_weight') |
|
self.bg_cls_weight = bg_cls_weight |
|
|
|
if train_cfg: |
|
assert 'assigner' in train_cfg, 'assigner should be provided '\ |
|
'when train_cfg is set.' |
|
assigner = train_cfg['assigner'] |
|
assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \ |
|
'The classification weight for loss and matcher should be' \ |
|
'exactly the same.' |
|
assert loss_bbox['loss_weight'] == assigner['reg_cost'][ |
|
'weight'], 'The regression L1 weight for loss and matcher ' \ |
|
'should be exactly the same.' |
|
|
|
|
|
|
|
|
|
self.assigner = TASK_UTILS.build(assigner) |
|
|
|
sampler_cfg = dict(type='PseudoSampler') |
|
self.sampler = TASK_UTILS.build(sampler_cfg) |
|
|
|
self.num_query = num_query |
|
self.num_classes = num_classes |
|
self.in_channels = in_channels |
|
self.num_reg_fcs = num_reg_fcs |
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
self.fp16_enabled = False |
|
self.embed_dims = 256 |
|
self.depth_step = depth_step |
|
self.depth_num = depth_num |
|
self.position_dim = 3 * self.depth_num |
|
self.position_range = position_range |
|
self.LID = LID |
|
self.depth_start = depth_start |
|
self.position_level = 0 |
|
self.with_position = with_position |
|
self.with_multiview = with_multiview |
|
assert 'num_feats' in positional_encoding |
|
num_feats = positional_encoding['num_feats'] |
|
assert num_feats * 2 == self.embed_dims, 'embed_dims should' \ |
|
f' be exactly 2 times of num_feats. Found {self.embed_dims}' \ |
|
f' and {num_feats}.' |
|
self.act_cfg = transformer.get('act_cfg', |
|
dict(type='ReLU', inplace=True)) |
|
self.num_pred = 6 |
|
self.normedlinear = normedlinear |
|
super(PETRHead, self).__init__( |
|
num_classes=num_classes, |
|
in_channels=in_channels, |
|
loss_cls=loss_cls, |
|
loss_bbox=loss_bbox, |
|
bbox_coder=bbox_coder, |
|
init_cfg=init_cfg) |
|
|
|
self.loss_cls = MODELS.build(loss_cls) |
|
self.loss_bbox = MODELS.build(loss_bbox) |
|
self.loss_iou = MODELS.build(loss_iou) |
|
|
|
if self.loss_cls.use_sigmoid: |
|
self.cls_out_channels = num_classes |
|
else: |
|
self.cls_out_channels = num_classes + 1 |
|
|
|
|
|
|
|
|
|
self.positional_encoding = TASK_UTILS.build(positional_encoding) |
|
self.transformer = MODELS.build(transformer) |
|
self.code_weights = nn.Parameter( |
|
torch.tensor(self.code_weights, requires_grad=False), |
|
requires_grad=False) |
|
self.bbox_coder = TASK_UTILS.build(bbox_coder) |
|
self.pc_range = self.bbox_coder.pc_range |
|
self._init_layers() |
|
|
|
def _init_layers(self): |
|
"""Initialize layers of the transformer head.""" |
|
if self.with_position: |
|
self.input_proj = Conv2d( |
|
self.in_channels, self.embed_dims, kernel_size=1) |
|
else: |
|
self.input_proj = Conv2d( |
|
self.in_channels, self.embed_dims, kernel_size=1) |
|
|
|
cls_branch = [] |
|
for _ in range(self.num_reg_fcs): |
|
cls_branch.append(Linear(self.embed_dims, self.embed_dims)) |
|
cls_branch.append(nn.LayerNorm(self.embed_dims)) |
|
cls_branch.append(nn.ReLU(inplace=True)) |
|
if self.normedlinear: |
|
cls_branch.append( |
|
NormedLinear(self.embed_dims, self.cls_out_channels)) |
|
else: |
|
cls_branch.append(Linear(self.embed_dims, self.cls_out_channels)) |
|
fc_cls = nn.Sequential(*cls_branch) |
|
|
|
reg_branch = [] |
|
for _ in range(self.num_reg_fcs): |
|
reg_branch.append(Linear(self.embed_dims, self.embed_dims)) |
|
reg_branch.append(nn.ReLU()) |
|
reg_branch.append(Linear(self.embed_dims, self.code_size)) |
|
reg_branch = nn.Sequential(*reg_branch) |
|
|
|
self.cls_branches = nn.ModuleList( |
|
[fc_cls for _ in range(self.num_pred)]) |
|
self.reg_branches = nn.ModuleList( |
|
[reg_branch for _ in range(self.num_pred)]) |
|
|
|
if self.with_multiview: |
|
self.adapt_pos3d = nn.Sequential( |
|
nn.Conv2d( |
|
self.embed_dims * 3 // 2, |
|
self.embed_dims * 4, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
nn.ReLU(), |
|
nn.Conv2d( |
|
self.embed_dims * 4, |
|
self.embed_dims, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
) |
|
else: |
|
self.adapt_pos3d = nn.Sequential( |
|
nn.Conv2d( |
|
self.embed_dims, |
|
self.embed_dims, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
nn.ReLU(), |
|
nn.Conv2d( |
|
self.embed_dims, |
|
self.embed_dims, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
) |
|
|
|
if self.with_position: |
|
self.position_encoder = nn.Sequential( |
|
nn.Conv2d( |
|
self.position_dim, |
|
self.embed_dims * 4, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
nn.ReLU(), |
|
nn.Conv2d( |
|
self.embed_dims * 4, |
|
self.embed_dims, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0), |
|
) |
|
|
|
self.reference_points = nn.Embedding(self.num_query, 3) |
|
self.query_embedding = nn.Sequential( |
|
nn.Linear(self.embed_dims * 3 // 2, self.embed_dims), |
|
nn.ReLU(), |
|
nn.Linear(self.embed_dims, self.embed_dims), |
|
) |
|
|
|
def init_weights(self): |
|
"""Initialize weights of the transformer head.""" |
|
|
|
self.transformer.init_weights() |
|
nn.init.uniform_(self.reference_points.weight.data, 0, 1) |
|
if self.loss_cls.use_sigmoid: |
|
bias_init = bias_init_with_prob(0.01) |
|
for m in self.cls_branches: |
|
nn.init.constant_(m[-1].bias, bias_init) |
|
|
|
def position_embeding(self, img_feats, img_metas, masks=None): |
|
eps = 1e-5 |
|
pad_h, pad_w = img_metas[0]['pad_shape'] |
|
B, N, C, H, W = img_feats[self.position_level].shape |
|
coords_h = torch.arange( |
|
H, device=img_feats[0].device).float() * pad_h / H |
|
coords_w = torch.arange( |
|
W, device=img_feats[0].device).float() * pad_w / W |
|
|
|
if self.LID: |
|
index = torch.arange( |
|
start=0, |
|
end=self.depth_num, |
|
step=1, |
|
device=img_feats[0].device).float() |
|
index_1 = index + 1 |
|
bin_size = (self.position_range[3] - self.depth_start) / ( |
|
self.depth_num * (1 + self.depth_num)) |
|
coords_d = self.depth_start + bin_size * index * index_1 |
|
else: |
|
index = torch.arange( |
|
start=0, |
|
end=self.depth_num, |
|
step=1, |
|
device=img_feats[0].device).float() |
|
bin_size = (self.position_range[3] - |
|
self.depth_start) / self.depth_num |
|
coords_d = self.depth_start + bin_size * index |
|
|
|
D = coords_d.shape[0] |
|
coords = torch.stack(torch.meshgrid([coords_w, coords_h, coords_d |
|
])).permute(1, 2, 3, |
|
0) |
|
coords = torch.cat((coords, torch.ones_like(coords[..., :1])), -1) |
|
coords[..., :2] = coords[..., :2] * torch.maximum( |
|
coords[..., 2:3], |
|
torch.ones_like(coords[..., 2:3]) * eps) |
|
|
|
img2lidars = [] |
|
for img_meta in img_metas: |
|
img2lidar = [] |
|
for i in range(len(img_meta['lidar2img'])): |
|
img2lidar.append(np.linalg.inv(img_meta['lidar2img'][i])) |
|
img2lidars.append(np.asarray(img2lidar)) |
|
img2lidars = np.asarray(img2lidars) |
|
img2lidars = coords.new_tensor(img2lidars) |
|
|
|
coords = coords.view(1, 1, W, H, D, 4, 1).repeat(B, N, 1, 1, 1, 1, 1) |
|
img2lidars = img2lidars.view(B, N, 1, 1, 1, 4, |
|
4).repeat(1, 1, W, H, D, 1, 1) |
|
coords3d = torch.matmul(img2lidars, coords).squeeze(-1)[..., :3] |
|
coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / ( |
|
self.position_range[3] - self.position_range[0]) |
|
coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / ( |
|
self.position_range[4] - self.position_range[1]) |
|
coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / ( |
|
self.position_range[5] - self.position_range[2]) |
|
|
|
coords_mask = (coords3d > 1.0) | (coords3d < 0.0) |
|
coords_mask = coords_mask.flatten(-2).sum(-1) > (D * 0.5) |
|
coords_mask = masks | coords_mask.permute(0, 1, 3, 2) |
|
coords3d = coords3d.permute(0, 1, 4, 5, 3, |
|
2).contiguous().view(B * N, -1, H, W) |
|
coords3d = inverse_sigmoid(coords3d) |
|
coords_position_embeding = self.position_encoder(coords3d) |
|
|
|
return coords_position_embeding.view(B, N, self.embed_dims, H, |
|
W), coords_mask |
|
|
|
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, |
|
missing_keys, unexpected_keys, error_msgs): |
|
"""load checkpoints.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
version = local_metadata.get('version', None) |
|
if (version is None or version < 2) and self.__class__ is PETRHead: |
|
convert_dict = { |
|
'.self_attn.': '.attentions.0.', |
|
|
|
'.multihead_attn.': '.attentions.1.', |
|
'.decoder.norm.': '.decoder.post_norm.' |
|
} |
|
state_dict_keys = list(state_dict.keys()) |
|
for k in state_dict_keys: |
|
for ori_key, convert_key in convert_dict.items(): |
|
if ori_key in k: |
|
convert_key = k.replace(ori_key, convert_key) |
|
state_dict[convert_key] = state_dict[k] |
|
del state_dict[k] |
|
|
|
super(AnchorFreeHead, |
|
self)._load_from_state_dict(state_dict, prefix, local_metadata, |
|
strict, missing_keys, |
|
unexpected_keys, error_msgs) |
|
|
|
def forward(self, mlvl_feats, img_metas): |
|
"""Forward function. |
|
|
|
Args: |
|
mlvl_feats (tuple[Tensor]): Features from the upstream |
|
network, each is a 5D-tensor with shape |
|
(B, N, C, H, W). |
|
Returns: |
|
all_cls_scores (Tensor): Outputs from the classification head, \ |
|
shape [nb_dec, bs, num_query, cls_out_channels]. Note \ |
|
cls_out_channels should includes background. |
|
all_bbox_preds (Tensor): Sigmoid outputs from the regression \ |
|
head with normalized coordinate format \ |
|
(cx, cy, w, l, cz, h, theta, vx, vy). \ |
|
Shape [nb_dec, bs, num_query, 9]. |
|
""" |
|
|
|
x = mlvl_feats[0] |
|
batch_size, num_cams = x.size(0), x.size(1) |
|
input_img_h, input_img_w = img_metas[0]['pad_shape'] |
|
masks = x.new_ones((batch_size, num_cams, input_img_h, input_img_w)) |
|
for img_id in range(batch_size): |
|
for cam_id in range(num_cams): |
|
img_h, img_w = img_metas[img_id]['img_shape'][cam_id] |
|
masks[img_id, cam_id, :img_h, :img_w] = 0 |
|
x = self.input_proj(x.flatten(0, 1)) |
|
x = x.view(batch_size, num_cams, *x.shape[-3:]) |
|
|
|
masks = F.interpolate(masks, size=x.shape[-2:]).to(torch.bool) |
|
|
|
if self.with_position: |
|
coords_position_embeding, _ = self.position_embeding( |
|
mlvl_feats, img_metas, masks) |
|
pos_embed = coords_position_embeding |
|
if self.with_multiview: |
|
sin_embed = self.positional_encoding(masks) |
|
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view( |
|
x.size()) |
|
pos_embed = pos_embed + sin_embed |
|
else: |
|
pos_embeds = [] |
|
for i in range(num_cams): |
|
xy_embed = self.positional_encoding(masks[:, i, :, :]) |
|
pos_embeds.append(xy_embed.unsqueeze(1)) |
|
sin_embed = torch.cat(pos_embeds, 1) |
|
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view( |
|
x.size()) |
|
pos_embed = pos_embed + sin_embed |
|
else: |
|
if self.with_multiview: |
|
pos_embed = self.positional_encoding(masks) |
|
pos_embed = self.adapt_pos3d(pos_embed.flatten(0, 1)).view( |
|
x.size()) |
|
else: |
|
pos_embeds = [] |
|
for i in range(num_cams): |
|
pos_embed = self.positional_encoding(masks[:, i, :, :]) |
|
pos_embeds.append(pos_embed.unsqueeze(1)) |
|
pos_embed = torch.cat(pos_embeds, 1) |
|
|
|
reference_points = self.reference_points.weight |
|
query_embeds = self.query_embedding(pos2posemb3d(reference_points)) |
|
reference_points = reference_points.unsqueeze(0).repeat( |
|
batch_size, 1, 1) |
|
|
|
outs_dec, _ = self.transformer(x, masks, query_embeds, pos_embed, |
|
self.reg_branches) |
|
outs_dec = torch.nan_to_num(outs_dec) |
|
outputs_classes = [] |
|
outputs_coords = [] |
|
for lvl in range(outs_dec.shape[0]): |
|
reference = inverse_sigmoid(reference_points.clone()) |
|
assert reference.shape[-1] == 3 |
|
outputs_class = self.cls_branches[lvl](outs_dec[lvl]).to( |
|
torch.float32) |
|
tmp = self.reg_branches[lvl](outs_dec[lvl]).to(torch.float32) |
|
|
|
tmp[..., 0:2] += reference[..., 0:2] |
|
tmp[..., 0:2] = tmp[..., 0:2].sigmoid() |
|
tmp[..., 4:5] += reference[..., 2:3] |
|
tmp[..., 4:5] = tmp[..., 4:5].sigmoid() |
|
|
|
outputs_coord = tmp |
|
outputs_classes.append(outputs_class) |
|
outputs_coords.append(outputs_coord) |
|
|
|
all_cls_scores = torch.stack(outputs_classes) |
|
all_bbox_preds = torch.stack(outputs_coords) |
|
|
|
all_bbox_preds[..., 0:1] = ( |
|
all_bbox_preds[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) + |
|
self.pc_range[0]) |
|
all_bbox_preds[..., 1:2] = ( |
|
all_bbox_preds[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) + |
|
self.pc_range[1]) |
|
all_bbox_preds[..., 4:5] = ( |
|
all_bbox_preds[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) + |
|
self.pc_range[2]) |
|
|
|
outs = { |
|
'all_cls_scores': all_cls_scores, |
|
'all_bbox_preds': all_bbox_preds, |
|
'enc_cls_scores': None, |
|
'enc_bbox_preds': None, |
|
} |
|
return outs |
|
|
|
def _get_target_single(self, |
|
cls_score, |
|
bbox_pred, |
|
gt_labels, |
|
gt_bboxes, |
|
gt_bboxes_ignore=None): |
|
""""Compute regression and classification targets for one image. |
|
Outputs from a single decoder layer of a single feature level are used. |
|
Args: |
|
cls_score (Tensor): Box score logits from a single decoder layer |
|
for one image. Shape [num_query, cls_out_channels]. |
|
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer |
|
for one image, with normalized coordinate (cx, cy, w, h) and |
|
shape [num_query, 4]. |
|
gt_bboxes (Tensor): Ground truth bboxes for one image with |
|
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels (Tensor): Ground truth class indices for one image |
|
with shape (num_gts, ). |
|
gt_bboxes_ignore (Tensor, optional): Bounding boxes |
|
which can be ignored. Default None. |
|
Returns: |
|
tuple[Tensor]: a tuple containing the following for one image. |
|
- labels (Tensor): Labels of each image. |
|
- label_weights (Tensor]): Label weights of each image. |
|
- bbox_targets (Tensor): BBox targets of each image. |
|
- bbox_weights (Tensor): BBox weights of each image. |
|
- pos_inds (Tensor): Sampled positive indices for each image. |
|
- neg_inds (Tensor): Sampled negative indices for each image. |
|
""" |
|
|
|
num_bboxes = bbox_pred.size(0) |
|
|
|
assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes, |
|
gt_labels, gt_bboxes_ignore) |
|
pred_instance_3d = InstanceData(priors=bbox_pred) |
|
gt_instances_3d = InstanceData(bboxes_3d=gt_bboxes) |
|
sampling_result = self.sampler.sample(assign_result, pred_instance_3d, |
|
gt_instances_3d) |
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
|
|
|
|
labels = gt_bboxes.new_full((num_bboxes, ), |
|
self.num_classes, |
|
dtype=torch.long) |
|
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds] |
|
label_weights = gt_bboxes.new_ones(num_bboxes) |
|
|
|
|
|
code_size = gt_bboxes.size(1) |
|
bbox_targets = torch.zeros_like(bbox_pred)[..., :code_size] |
|
bbox_weights = torch.zeros_like(bbox_pred) |
|
bbox_weights[pos_inds] = 1.0 |
|
|
|
bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes |
|
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, |
|
neg_inds) |
|
|
|
def get_targets(self, |
|
cls_scores_list, |
|
bbox_preds_list, |
|
gt_bboxes_list, |
|
gt_labels_list, |
|
gt_bboxes_ignore_list=None): |
|
""""Compute regression and classification targets for a batch image. |
|
Outputs from a single decoder layer of a single feature level are used. |
|
Args: |
|
cls_scores_list (list[Tensor]): Box score logits from a single |
|
decoder layer for each image with shape [num_query, |
|
cls_out_channels]. |
|
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single |
|
decoder layer for each image, with normalized coordinate |
|
(cx, cy, w, h) and shape [num_query, 4]. |
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image |
|
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels_list (list[Tensor]): Ground truth class indices for each |
|
image with shape (num_gts, ). |
|
gt_bboxes_ignore_list (list[Tensor], optional): Bounding |
|
boxes which can be ignored for each image. Default None. |
|
Returns: |
|
tuple: a tuple containing the following targets. |
|
- labels_list (list[Tensor]): Labels for all images. |
|
- label_weights_list (list[Tensor]): Label weights for all \ |
|
images. |
|
- bbox_targets_list (list[Tensor]): BBox targets for all \ |
|
images. |
|
- bbox_weights_list (list[Tensor]): BBox weights for all \ |
|
images. |
|
- num_total_pos (int): Number of positive samples in all \ |
|
images. |
|
- num_total_neg (int): Number of negative samples in all \ |
|
images. |
|
""" |
|
assert gt_bboxes_ignore_list is None, \ |
|
'Only supports for gt_bboxes_ignore setting to None.' |
|
num_imgs = len(cls_scores_list) |
|
gt_bboxes_ignore_list = [ |
|
gt_bboxes_ignore_list for _ in range(num_imgs) |
|
] |
|
gt_labels_list = gt_labels_list[0] |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
pos_inds_list, |
|
neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list, |
|
bbox_preds_list, gt_labels_list, |
|
gt_bboxes_list, gt_bboxes_ignore_list) |
|
num_total_pos = sum((inds.numel() for inds in pos_inds_list)) |
|
num_total_neg = sum((inds.numel() for inds in neg_inds_list)) |
|
return (labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, num_total_pos, num_total_neg) |
|
|
|
def loss_by_feat_single(self, |
|
cls_scores, |
|
bbox_preds, |
|
gt_bboxes_list, |
|
gt_labels_list, |
|
gt_bboxes_ignore_list=None): |
|
""""Loss function for outputs from a single decoder layer of a single |
|
feature level. |
|
|
|
Args: |
|
cls_scores (Tensor): Box score logits from a single decoder layer |
|
for all images. Shape [bs, num_query, cls_out_channels]. |
|
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer |
|
for all images, with normalized coordinate (cx, cy, w, h) and |
|
shape [bs, num_query, 4]. |
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image |
|
with shape (num_gts, 4) in |
|
[tl_x, tl_y, br_x,loss_by_feat_single br_y] format. |
|
gt_labels_list (list[Tensor]): Ground truth class indices for each |
|
image with shape (num_gts, ). |
|
gt_bboxes_ignore_list (list[Tensor], optional): Bounding |
|
boxes which can be ignored for each image. Default None. |
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components for outputs |
|
from a single decoder layer. |
|
""" |
|
num_imgs = cls_scores.size(0) |
|
cls_scores_list = [cls_scores[i] for i in range(num_imgs)] |
|
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)] |
|
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list, |
|
gt_bboxes_list, gt_labels_list, |
|
gt_bboxes_ignore_list) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
num_total_pos, num_total_neg) = cls_reg_targets |
|
labels = torch.cat(labels_list, 0) |
|
label_weights = torch.cat(label_weights_list, 0) |
|
bbox_targets = torch.cat(bbox_targets_list, 0) |
|
|
|
bbox_weights = torch.cat(bbox_weights_list, 0) |
|
|
|
|
|
cls_scores = cls_scores.reshape(-1, self.cls_out_channels) |
|
|
|
cls_avg_factor = num_total_pos * 1.0 + \ |
|
num_total_neg * self.bg_cls_weight |
|
|
|
|
|
|
|
|
|
cls_avg_factor = max(cls_avg_factor, 1) |
|
loss_cls = self.loss_cls( |
|
cls_scores, labels, label_weights, avg_factor=cls_avg_factor) |
|
|
|
|
|
|
|
num_total_pos = loss_cls.new_tensor([num_total_pos]) |
|
|
|
num_total_pos = torch.clamp(num_total_pos, min=1).item() |
|
|
|
|
|
bbox_preds = bbox_preds.reshape(-1, bbox_preds.size(-1)) |
|
normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range) |
|
isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1) |
|
bbox_weights = bbox_weights * self.code_weights |
|
|
|
loss_bbox = self.loss_bbox( |
|
bbox_preds[isnotnan, :10], |
|
normalized_bbox_targets[isnotnan, :10], |
|
bbox_weights[isnotnan, :10], |
|
avg_factor=num_total_pos) |
|
|
|
loss_cls = torch.nan_to_num(loss_cls) |
|
loss_bbox = torch.nan_to_num(loss_bbox) |
|
return loss_cls, loss_bbox |
|
|
|
def loss_by_feat(self, |
|
gt_bboxes_list, |
|
gt_labels_list, |
|
preds_dicts, |
|
gt_bboxes_ignore=None): |
|
""""Loss function. |
|
Args: |
|
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image |
|
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format. |
|
gt_labels_list (list[Tensor]): Ground truth class indices for each |
|
image with shape (num_gts, ). |
|
preds_dicts: |
|
all_cls_scores (Tensor): Classification score of all |
|
decoder layers, has shape |
|
[nb_dec, bs, num_query, cls_out_channels]. |
|
all_bbox_preds (Tensor): Sigmoid regression |
|
outputs of all decode layers. Each is a 4D-tensor with |
|
normalized coordinate format (cx, cy, w, h) and shape |
|
[nb_dec, bs, num_query, 4]. |
|
enc_cls_scores (Tensor): Classification scores of |
|
points on encode feature map , has shape |
|
(N, h*w, num_classes). Only be passed when as_two_stage is |
|
True, otherwise is None. |
|
enc_bbox_preds (Tensor): Regression results of each points |
|
on the encode feature map, has shape (N, h*w, 4). Only be |
|
passed when as_two_stage is True, otherwise is None. |
|
gt_bboxes_ignore (list[Tensor], optional): Bounding boxes |
|
which can be ignored for each image. Default None. |
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
assert gt_bboxes_ignore is None, \ |
|
f'{self.__class__.__name__} only supports ' \ |
|
f'for gt_bboxes_ignore setting to None.' |
|
|
|
all_cls_scores = preds_dicts['all_cls_scores'] |
|
all_bbox_preds = preds_dicts['all_bbox_preds'] |
|
enc_cls_scores = preds_dicts['enc_cls_scores'] |
|
enc_bbox_preds = preds_dicts['enc_bbox_preds'] |
|
|
|
num_dec_layers = len(all_cls_scores) |
|
device = gt_labels_list[0].device |
|
|
|
gt_bboxes_list = [ |
|
torch.cat((gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]), |
|
dim=1).to(device) for gt_bboxes in gt_bboxes_list |
|
] |
|
|
|
all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)] |
|
all_gt_labels_list = [[gt_labels_list] for _ in range(num_dec_layers)] |
|
all_gt_bboxes_ignore_list = [ |
|
gt_bboxes_ignore for _ in range(num_dec_layers) |
|
] |
|
|
|
losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single, |
|
all_cls_scores, all_bbox_preds, |
|
all_gt_bboxes_list, |
|
all_gt_labels_list, |
|
all_gt_bboxes_ignore_list) |
|
|
|
loss_dict = dict() |
|
|
|
if enc_cls_scores is not None: |
|
binary_labels_list = [ |
|
torch.zeros_like(gt_labels_list[i]) |
|
for i in range(len(all_gt_labels_list)) |
|
] |
|
enc_loss_cls, enc_losses_bbox = \ |
|
self.loss_single(enc_cls_scores, enc_bbox_preds, |
|
gt_bboxes_list, binary_labels_list, |
|
gt_bboxes_ignore) |
|
loss_dict['enc_loss_cls'] = enc_loss_cls |
|
loss_dict['enc_loss_bbox'] = enc_losses_bbox |
|
|
|
|
|
loss_dict['loss_cls'] = losses_cls[-1] |
|
loss_dict['loss_bbox'] = losses_bbox[-1] |
|
|
|
|
|
num_dec_layer = 0 |
|
for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]): |
|
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i |
|
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i |
|
num_dec_layer += 1 |
|
return loss_dict |
|
|
|
def get_bboxes(self, preds_dicts, img_metas, rescale=False): |
|
"""Generate bboxes from bbox head predictions. |
|
|
|
Args: |
|
preds_dicts (tuple[list[dict]]): Prediction results. |
|
img_metas (list[dict]): Point cloud and image's meta info. |
|
Returns: |
|
list[dict]: Decoded bbox, scores and labels after nms. |
|
""" |
|
preds_dicts = self.bbox_coder.decode(preds_dicts) |
|
num_samples = len(preds_dicts) |
|
|
|
ret_list = [] |
|
for i in range(num_samples): |
|
preds = preds_dicts[i] |
|
bboxes = preds['bboxes'] |
|
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5 |
|
bboxes = img_metas[i]['box_type_3d'](bboxes, bboxes.size(-1)) |
|
scores = preds['scores'] |
|
labels = preds['labels'] |
|
ret_list.append([bboxes, scores, labels]) |
|
return ret_list |
|
|