mm3dtest / projects /PETR /petr /petr_head.py
giantmonkeyTC
2344
34d1f8b
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR3D (https://github.com/WangYueFt/detr3d)
# Copyright (c) 2021 Wang, Yue
# ------------------------------------------------------------------------
# Modified from mmdetection3d (https://github.com/open-mmlab/mmdetection3d)
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import Conv2d, Linear
from mmdet.models.dense_heads.anchor_free_head import AnchorFreeHead
from mmdet.models.layers import NormedLinear
from mmdet.models.layers.transformer import inverse_sigmoid
from mmdet.models.utils import multi_apply
from mmengine.model.weight_init import bias_init_with_prob
from mmengine.structures import InstanceData
from mmdet3d.registry import MODELS, TASK_UTILS
from projects.PETR.petr.utils import normalize_bbox
def pos2posemb3d(pos, num_pos_feats=128, temperature=10000):
scale = 2 * math.pi
pos = pos * scale
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos.device)
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats)
pos_x = pos[..., 0, None] / dim_t
pos_y = pos[..., 1, None] / dim_t
pos_z = pos[..., 2, None] / dim_t
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()),
dim=-1).flatten(-2)
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()),
dim=-1).flatten(-2)
pos_z = torch.stack((pos_z[..., 0::2].sin(), pos_z[..., 1::2].cos()),
dim=-1).flatten(-2)
posemb = torch.cat((pos_y, pos_x, pos_z), dim=-1)
return posemb
@MODELS.register_module()
class PETRHead(AnchorFreeHead):
"""Implements the DETR transformer head. See `paper: End-to-End Object
Detection with Transformers.
<https://arxiv.org/pdf/2005.12872>`_ for details.
Args:
num_classes (int): Number of categories excluding the background.
in_channels (int): Number of channels in the input feature map.
num_query (int): Number of query in Transformer.
num_reg_fcs (int, optional): Number of fully-connected layers used in
`FFN`, which is then used for the regression head. Default 2.
transformer (obj:`mmcv.ConfigDict`|dict): Config for transformer.
Default: None.
sync_cls_avg_factor (bool): Whether to sync the avg_factor of
all ranks. Default to False.
positional_encoding (obj:`mmcv.ConfigDict`|dict):
Config for position encoding.
loss_cls (obj:`mmcv.ConfigDict`|dict): Config of the
classification loss. Default `CrossEntropyLoss`.
loss_bbox (obj:`mmcv.ConfigDict`|dict): Config of the
regression loss. Default `L1Loss`.
loss_iou (obj:`mmcv.ConfigDict`|dict): Config of the
regression iou loss. Default `GIoULoss`.
tran_cfg (obj:`mmcv.ConfigDict`|dict): Training config of
transformer head.
test_cfg (obj:`mmcv.ConfigDict`|dict): Testing config of
transformer head.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
_version = 2
def __init__(self,
num_classes,
in_channels,
num_query=100,
num_reg_fcs=2,
transformer=None,
sync_cls_avg_factor=False,
positional_encoding=dict(
type='SinePositionalEncoding',
num_feats=128,
normalize=True),
code_weights=None,
bbox_coder=None,
loss_cls=dict(
type='CrossEntropyLoss',
bg_cls_weight=0.1,
use_sigmoid=False,
loss_weight=1.0,
class_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=5.0),
loss_iou=dict(type='GIoULoss', loss_weight=2.0),
train_cfg=dict(
assigner=dict(
type='HungarianAssigner',
cls_cost=dict(type='ClassificationCost', weight=1.),
reg_cost=dict(type='BBoxL1Cost', weight=5.0),
iou_cost=dict(
type='IoUCost', iou_mode='giou', weight=2.0))),
test_cfg=dict(max_per_img=100),
with_position=True,
with_multiview=False,
depth_step=0.8,
depth_num=64,
LID=False,
depth_start=1,
position_range=[-65, -65, -8.0, 65, 65, 8.0],
init_cfg=None,
normedlinear=False,
**kwargs):
# NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
# since it brings inconvenience when the initialization of
# `AnchorFreeHead` is called.
if 'code_size' in kwargs:
self.code_size = kwargs['code_size']
else:
self.code_size = 10
if code_weights is not None:
self.code_weights = code_weights
else:
self.code_weights = [
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2
]
self.code_weights = self.code_weights[:self.code_size]
self.bg_cls_weight = 0
self.sync_cls_avg_factor = sync_cls_avg_factor
class_weight = loss_cls.get('class_weight', None)
if class_weight is not None and (self.__class__ is PETRHead):
assert isinstance(class_weight, float), 'Expected ' \
'class_weight to have type float. Found ' \
f'{type(class_weight)}.'
# NOTE following the official DETR rep0, bg_cls_weight means
# relative classification weight of the no-object class.
bg_cls_weight = loss_cls.get('bg_cls_weight', class_weight)
assert isinstance(bg_cls_weight, float), 'Expected ' \
'bg_cls_weight to have type float. Found ' \
f'{type(bg_cls_weight)}.'
class_weight = torch.ones(num_classes + 1) * class_weight
# set background class as the last indice
class_weight[num_classes] = bg_cls_weight
loss_cls.update({'class_weight': class_weight})
if 'bg_cls_weight' in loss_cls:
loss_cls.pop('bg_cls_weight')
self.bg_cls_weight = bg_cls_weight
if train_cfg:
assert 'assigner' in train_cfg, 'assigner should be provided '\
'when train_cfg is set.'
assigner = train_cfg['assigner']
assert loss_cls['loss_weight'] == assigner['cls_cost']['weight'], \
'The classification weight for loss and matcher should be' \
'exactly the same.'
assert loss_bbox['loss_weight'] == assigner['reg_cost'][
'weight'], 'The regression L1 weight for loss and matcher ' \
'should be exactly the same.'
# assert loss_iou['loss_weight'] == assigner['iou_cost'][
# 'weight'], \
# 'The regression iou weight for loss and matcher should be' \
# 'exactly the same.'
self.assigner = TASK_UTILS.build(assigner)
# DETR sampling=False, so use PseudoSampler
sampler_cfg = dict(type='PseudoSampler')
self.sampler = TASK_UTILS.build(sampler_cfg)
self.num_query = num_query
self.num_classes = num_classes
self.in_channels = in_channels
self.num_reg_fcs = num_reg_fcs
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.fp16_enabled = False
self.embed_dims = 256
self.depth_step = depth_step
self.depth_num = depth_num
self.position_dim = 3 * self.depth_num
self.position_range = position_range
self.LID = LID
self.depth_start = depth_start
self.position_level = 0
self.with_position = with_position
self.with_multiview = with_multiview
assert 'num_feats' in positional_encoding
num_feats = positional_encoding['num_feats']
assert num_feats * 2 == self.embed_dims, 'embed_dims should' \
f' be exactly 2 times of num_feats. Found {self.embed_dims}' \
f' and {num_feats}.'
self.act_cfg = transformer.get('act_cfg',
dict(type='ReLU', inplace=True))
self.num_pred = 6
self.normedlinear = normedlinear
super(PETRHead, self).__init__(
num_classes=num_classes,
in_channels=in_channels,
loss_cls=loss_cls,
loss_bbox=loss_bbox,
bbox_coder=bbox_coder,
init_cfg=init_cfg)
self.loss_cls = MODELS.build(loss_cls)
self.loss_bbox = MODELS.build(loss_bbox)
self.loss_iou = MODELS.build(loss_iou)
if self.loss_cls.use_sigmoid:
self.cls_out_channels = num_classes
else:
self.cls_out_channels = num_classes + 1
# self.activate = build_activation_layer(self.act_cfg)
# if self.with_multiview or not self.with_position:
# self.positional_encoding = build_positional_encoding(
# positional_encoding)
self.positional_encoding = TASK_UTILS.build(positional_encoding)
self.transformer = MODELS.build(transformer)
self.code_weights = nn.Parameter(
torch.tensor(self.code_weights, requires_grad=False),
requires_grad=False)
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.pc_range = self.bbox_coder.pc_range
self._init_layers()
def _init_layers(self):
"""Initialize layers of the transformer head."""
if self.with_position:
self.input_proj = Conv2d(
self.in_channels, self.embed_dims, kernel_size=1)
else:
self.input_proj = Conv2d(
self.in_channels, self.embed_dims, kernel_size=1)
cls_branch = []
for _ in range(self.num_reg_fcs):
cls_branch.append(Linear(self.embed_dims, self.embed_dims))
cls_branch.append(nn.LayerNorm(self.embed_dims))
cls_branch.append(nn.ReLU(inplace=True))
if self.normedlinear:
cls_branch.append(
NormedLinear(self.embed_dims, self.cls_out_channels))
else:
cls_branch.append(Linear(self.embed_dims, self.cls_out_channels))
fc_cls = nn.Sequential(*cls_branch)
reg_branch = []
for _ in range(self.num_reg_fcs):
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
reg_branch.append(nn.ReLU())
reg_branch.append(Linear(self.embed_dims, self.code_size))
reg_branch = nn.Sequential(*reg_branch)
self.cls_branches = nn.ModuleList(
[fc_cls for _ in range(self.num_pred)])
self.reg_branches = nn.ModuleList(
[reg_branch for _ in range(self.num_pred)])
if self.with_multiview:
self.adapt_pos3d = nn.Sequential(
nn.Conv2d(
self.embed_dims * 3 // 2,
self.embed_dims * 4,
kernel_size=1,
stride=1,
padding=0),
nn.ReLU(),
nn.Conv2d(
self.embed_dims * 4,
self.embed_dims,
kernel_size=1,
stride=1,
padding=0),
)
else:
self.adapt_pos3d = nn.Sequential(
nn.Conv2d(
self.embed_dims,
self.embed_dims,
kernel_size=1,
stride=1,
padding=0),
nn.ReLU(),
nn.Conv2d(
self.embed_dims,
self.embed_dims,
kernel_size=1,
stride=1,
padding=0),
)
if self.with_position:
self.position_encoder = nn.Sequential(
nn.Conv2d(
self.position_dim,
self.embed_dims * 4,
kernel_size=1,
stride=1,
padding=0),
nn.ReLU(),
nn.Conv2d(
self.embed_dims * 4,
self.embed_dims,
kernel_size=1,
stride=1,
padding=0),
)
self.reference_points = nn.Embedding(self.num_query, 3)
self.query_embedding = nn.Sequential(
nn.Linear(self.embed_dims * 3 // 2, self.embed_dims),
nn.ReLU(),
nn.Linear(self.embed_dims, self.embed_dims),
)
def init_weights(self):
"""Initialize weights of the transformer head."""
# The initialization for transformer is important
self.transformer.init_weights()
nn.init.uniform_(self.reference_points.weight.data, 0, 1)
if self.loss_cls.use_sigmoid:
bias_init = bias_init_with_prob(0.01)
for m in self.cls_branches:
nn.init.constant_(m[-1].bias, bias_init)
def position_embeding(self, img_feats, img_metas, masks=None):
eps = 1e-5
pad_h, pad_w = img_metas[0]['pad_shape']
B, N, C, H, W = img_feats[self.position_level].shape
coords_h = torch.arange(
H, device=img_feats[0].device).float() * pad_h / H
coords_w = torch.arange(
W, device=img_feats[0].device).float() * pad_w / W
if self.LID:
index = torch.arange(
start=0,
end=self.depth_num,
step=1,
device=img_feats[0].device).float()
index_1 = index + 1
bin_size = (self.position_range[3] - self.depth_start) / (
self.depth_num * (1 + self.depth_num))
coords_d = self.depth_start + bin_size * index * index_1
else:
index = torch.arange(
start=0,
end=self.depth_num,
step=1,
device=img_feats[0].device).float()
bin_size = (self.position_range[3] -
self.depth_start) / self.depth_num
coords_d = self.depth_start + bin_size * index
D = coords_d.shape[0]
coords = torch.stack(torch.meshgrid([coords_w, coords_h, coords_d
])).permute(1, 2, 3,
0) # W, H, D, 3
coords = torch.cat((coords, torch.ones_like(coords[..., :1])), -1)
coords[..., :2] = coords[..., :2] * torch.maximum(
coords[..., 2:3],
torch.ones_like(coords[..., 2:3]) * eps)
img2lidars = []
for img_meta in img_metas:
img2lidar = []
for i in range(len(img_meta['lidar2img'])):
img2lidar.append(np.linalg.inv(img_meta['lidar2img'][i]))
img2lidars.append(np.asarray(img2lidar))
img2lidars = np.asarray(img2lidars)
img2lidars = coords.new_tensor(img2lidars) # (B, N, 4, 4)
coords = coords.view(1, 1, W, H, D, 4, 1).repeat(B, N, 1, 1, 1, 1, 1)
img2lidars = img2lidars.view(B, N, 1, 1, 1, 4,
4).repeat(1, 1, W, H, D, 1, 1)
coords3d = torch.matmul(img2lidars, coords).squeeze(-1)[..., :3]
coords3d[..., 0:1] = (coords3d[..., 0:1] - self.position_range[0]) / (
self.position_range[3] - self.position_range[0])
coords3d[..., 1:2] = (coords3d[..., 1:2] - self.position_range[1]) / (
self.position_range[4] - self.position_range[1])
coords3d[..., 2:3] = (coords3d[..., 2:3] - self.position_range[2]) / (
self.position_range[5] - self.position_range[2])
coords_mask = (coords3d > 1.0) | (coords3d < 0.0)
coords_mask = coords_mask.flatten(-2).sum(-1) > (D * 0.5)
coords_mask = masks | coords_mask.permute(0, 1, 3, 2)
coords3d = coords3d.permute(0, 1, 4, 5, 3,
2).contiguous().view(B * N, -1, H, W)
coords3d = inverse_sigmoid(coords3d)
coords_position_embeding = self.position_encoder(coords3d)
return coords_position_embeding.view(B, N, self.embed_dims, H,
W), coords_mask
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
"""load checkpoints."""
# NOTE here use `AnchorFreeHead` instead of `TransformerHead`,
# since `AnchorFreeHead._load_from_state_dict` should not be
# called here. Invoking the default `Module._load_from_state_dict`
# is enough.
# Names of some parameters in has been changed.
version = local_metadata.get('version', None)
if (version is None or version < 2) and self.__class__ is PETRHead:
convert_dict = {
'.self_attn.': '.attentions.0.',
# '.ffn.': '.ffns.0.',
'.multihead_attn.': '.attentions.1.',
'.decoder.norm.': '.decoder.post_norm.'
}
state_dict_keys = list(state_dict.keys())
for k in state_dict_keys:
for ori_key, convert_key in convert_dict.items():
if ori_key in k:
convert_key = k.replace(ori_key, convert_key)
state_dict[convert_key] = state_dict[k]
del state_dict[k]
super(AnchorFreeHead,
self)._load_from_state_dict(state_dict, prefix, local_metadata,
strict, missing_keys,
unexpected_keys, error_msgs)
def forward(self, mlvl_feats, img_metas):
"""Forward function.
Args:
mlvl_feats (tuple[Tensor]): Features from the upstream
network, each is a 5D-tensor with shape
(B, N, C, H, W).
Returns:
all_cls_scores (Tensor): Outputs from the classification head, \
shape [nb_dec, bs, num_query, cls_out_channels]. Note \
cls_out_channels should includes background.
all_bbox_preds (Tensor): Sigmoid outputs from the regression \
head with normalized coordinate format \
(cx, cy, w, l, cz, h, theta, vx, vy). \
Shape [nb_dec, bs, num_query, 9].
"""
x = mlvl_feats[0]
batch_size, num_cams = x.size(0), x.size(1)
input_img_h, input_img_w = img_metas[0]['pad_shape']
masks = x.new_ones((batch_size, num_cams, input_img_h, input_img_w))
for img_id in range(batch_size):
for cam_id in range(num_cams):
img_h, img_w = img_metas[img_id]['img_shape'][cam_id]
masks[img_id, cam_id, :img_h, :img_w] = 0
x = self.input_proj(x.flatten(0, 1))
x = x.view(batch_size, num_cams, *x.shape[-3:])
# interpolate masks to have the same spatial shape with x
masks = F.interpolate(masks, size=x.shape[-2:]).to(torch.bool)
if self.with_position:
coords_position_embeding, _ = self.position_embeding(
mlvl_feats, img_metas, masks)
pos_embed = coords_position_embeding
if self.with_multiview:
sin_embed = self.positional_encoding(masks)
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(
x.size())
pos_embed = pos_embed + sin_embed
else:
pos_embeds = []
for i in range(num_cams):
xy_embed = self.positional_encoding(masks[:, i, :, :])
pos_embeds.append(xy_embed.unsqueeze(1))
sin_embed = torch.cat(pos_embeds, 1)
sin_embed = self.adapt_pos3d(sin_embed.flatten(0, 1)).view(
x.size())
pos_embed = pos_embed + sin_embed
else:
if self.with_multiview:
pos_embed = self.positional_encoding(masks)
pos_embed = self.adapt_pos3d(pos_embed.flatten(0, 1)).view(
x.size())
else:
pos_embeds = []
for i in range(num_cams):
pos_embed = self.positional_encoding(masks[:, i, :, :])
pos_embeds.append(pos_embed.unsqueeze(1))
pos_embed = torch.cat(pos_embeds, 1)
reference_points = self.reference_points.weight
query_embeds = self.query_embedding(pos2posemb3d(reference_points))
reference_points = reference_points.unsqueeze(0).repeat(
batch_size, 1, 1) # .sigmoid()
outs_dec, _ = self.transformer(x, masks, query_embeds, pos_embed,
self.reg_branches)
outs_dec = torch.nan_to_num(outs_dec)
outputs_classes = []
outputs_coords = []
for lvl in range(outs_dec.shape[0]):
reference = inverse_sigmoid(reference_points.clone())
assert reference.shape[-1] == 3
outputs_class = self.cls_branches[lvl](outs_dec[lvl]).to(
torch.float32)
tmp = self.reg_branches[lvl](outs_dec[lvl]).to(torch.float32)
tmp[..., 0:2] += reference[..., 0:2]
tmp[..., 0:2] = tmp[..., 0:2].sigmoid()
tmp[..., 4:5] += reference[..., 2:3]
tmp[..., 4:5] = tmp[..., 4:5].sigmoid()
outputs_coord = tmp
outputs_classes.append(outputs_class)
outputs_coords.append(outputs_coord)
all_cls_scores = torch.stack(outputs_classes)
all_bbox_preds = torch.stack(outputs_coords)
all_bbox_preds[..., 0:1] = (
all_bbox_preds[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) +
self.pc_range[0])
all_bbox_preds[..., 1:2] = (
all_bbox_preds[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) +
self.pc_range[1])
all_bbox_preds[..., 4:5] = (
all_bbox_preds[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) +
self.pc_range[2])
outs = {
'all_cls_scores': all_cls_scores,
'all_bbox_preds': all_bbox_preds,
'enc_cls_scores': None,
'enc_bbox_preds': None,
}
return outs
def _get_target_single(self,
cls_score,
bbox_pred,
gt_labels,
gt_bboxes,
gt_bboxes_ignore=None):
""""Compute regression and classification targets for one image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_score (Tensor): Box score logits from a single decoder layer
for one image. Shape [num_query, cls_out_channels].
bbox_pred (Tensor): Sigmoid outputs from a single decoder layer
for one image, with normalized coordinate (cx, cy, w, h) and
shape [num_query, 4].
gt_bboxes (Tensor): Ground truth bboxes for one image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (Tensor): Ground truth class indices for one image
with shape (num_gts, ).
gt_bboxes_ignore (Tensor, optional): Bounding boxes
which can be ignored. Default None.
Returns:
tuple[Tensor]: a tuple containing the following for one image.
- labels (Tensor): Labels of each image.
- label_weights (Tensor]): Label weights of each image.
- bbox_targets (Tensor): BBox targets of each image.
- bbox_weights (Tensor): BBox weights of each image.
- pos_inds (Tensor): Sampled positive indices for each image.
- neg_inds (Tensor): Sampled negative indices for each image.
"""
num_bboxes = bbox_pred.size(0)
# assigner and sampler
assign_result = self.assigner.assign(bbox_pred, cls_score, gt_bboxes,
gt_labels, gt_bboxes_ignore)
pred_instance_3d = InstanceData(priors=bbox_pred)
gt_instances_3d = InstanceData(bboxes_3d=gt_bboxes)
sampling_result = self.sampler.sample(assign_result, pred_instance_3d,
gt_instances_3d)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# label targets
labels = gt_bboxes.new_full((num_bboxes, ),
self.num_classes,
dtype=torch.long)
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
label_weights = gt_bboxes.new_ones(num_bboxes)
# bbox targets
code_size = gt_bboxes.size(1)
bbox_targets = torch.zeros_like(bbox_pred)[..., :code_size]
bbox_weights = torch.zeros_like(bbox_pred)
bbox_weights[pos_inds] = 1.0
# DETR
bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds)
def get_targets(self,
cls_scores_list,
bbox_preds_list,
gt_bboxes_list,
gt_labels_list,
gt_bboxes_ignore_list=None):
""""Compute regression and classification targets for a batch image.
Outputs from a single decoder layer of a single feature level are used.
Args:
cls_scores_list (list[Tensor]): Box score logits from a single
decoder layer for each image with shape [num_query,
cls_out_channels].
bbox_preds_list (list[Tensor]): Sigmoid outputs from a single
decoder layer for each image, with normalized coordinate
(cx, cy, w, h) and shape [num_query, 4].
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels_list (list[Tensor]): Ground truth class indices for each
image with shape (num_gts, ).
gt_bboxes_ignore_list (list[Tensor], optional): Bounding
boxes which can be ignored for each image. Default None.
Returns:
tuple: a tuple containing the following targets.
- labels_list (list[Tensor]): Labels for all images.
- label_weights_list (list[Tensor]): Label weights for all \
images.
- bbox_targets_list (list[Tensor]): BBox targets for all \
images.
- bbox_weights_list (list[Tensor]): BBox weights for all \
images.
- num_total_pos (int): Number of positive samples in all \
images.
- num_total_neg (int): Number of negative samples in all \
images.
"""
assert gt_bboxes_ignore_list is None, \
'Only supports for gt_bboxes_ignore setting to None.'
num_imgs = len(cls_scores_list)
gt_bboxes_ignore_list = [
gt_bboxes_ignore_list for _ in range(num_imgs)
]
gt_labels_list = gt_labels_list[0]
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
pos_inds_list,
neg_inds_list) = multi_apply(self._get_target_single, cls_scores_list,
bbox_preds_list, gt_labels_list,
gt_bboxes_list, gt_bboxes_ignore_list)
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
return (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, num_total_pos, num_total_neg)
def loss_by_feat_single(self,
cls_scores,
bbox_preds,
gt_bboxes_list,
gt_labels_list,
gt_bboxes_ignore_list=None):
""""Loss function for outputs from a single decoder layer of a single
feature level.
Args:
cls_scores (Tensor): Box score logits from a single decoder layer
for all images. Shape [bs, num_query, cls_out_channels].
bbox_preds (Tensor): Sigmoid outputs from a single decoder layer
for all images, with normalized coordinate (cx, cy, w, h) and
shape [bs, num_query, 4].
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
with shape (num_gts, 4) in
[tl_x, tl_y, br_x,loss_by_feat_single br_y] format.
gt_labels_list (list[Tensor]): Ground truth class indices for each
image with shape (num_gts, ).
gt_bboxes_ignore_list (list[Tensor], optional): Bounding
boxes which can be ignored for each image. Default None.
Returns:
dict[str, Tensor]: A dictionary of loss components for outputs
from a single decoder layer.
"""
num_imgs = cls_scores.size(0)
cls_scores_list = [cls_scores[i] for i in range(num_imgs)]
bbox_preds_list = [bbox_preds[i] for i in range(num_imgs)]
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
gt_bboxes_list, gt_labels_list,
gt_bboxes_ignore_list)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
num_total_pos, num_total_neg) = cls_reg_targets
labels = torch.cat(labels_list, 0)
label_weights = torch.cat(label_weights_list, 0)
bbox_targets = torch.cat(bbox_targets_list, 0)
bbox_weights = torch.cat(bbox_weights_list, 0)
# classification loss
cls_scores = cls_scores.reshape(-1, self.cls_out_channels)
# construct weighted avg_factor to match with the official DETR repo
cls_avg_factor = num_total_pos * 1.0 + \
num_total_neg * self.bg_cls_weight
# if self.sync_cls_avg_factor:
# cls_avg_factor = reduce_mean(
# cls_scores.new_tensor([cls_avg_factor]))
cls_avg_factor = max(cls_avg_factor, 1)
loss_cls = self.loss_cls(
cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
# Compute the average number of gt boxes across all gpus, for
# normalization purposes
num_total_pos = loss_cls.new_tensor([num_total_pos])
# num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
num_total_pos = torch.clamp(num_total_pos, min=1).item()
# regression L1 loss
bbox_preds = bbox_preds.reshape(-1, bbox_preds.size(-1))
normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range)
isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1)
bbox_weights = bbox_weights * self.code_weights
loss_bbox = self.loss_bbox(
bbox_preds[isnotnan, :10],
normalized_bbox_targets[isnotnan, :10],
bbox_weights[isnotnan, :10],
avg_factor=num_total_pos)
loss_cls = torch.nan_to_num(loss_cls)
loss_bbox = torch.nan_to_num(loss_bbox)
return loss_cls, loss_bbox
def loss_by_feat(self,
gt_bboxes_list,
gt_labels_list,
preds_dicts,
gt_bboxes_ignore=None):
""""Loss function.
Args:
gt_bboxes_list (list[Tensor]): Ground truth bboxes for each image
with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels_list (list[Tensor]): Ground truth class indices for each
image with shape (num_gts, ).
preds_dicts:
all_cls_scores (Tensor): Classification score of all
decoder layers, has shape
[nb_dec, bs, num_query, cls_out_channels].
all_bbox_preds (Tensor): Sigmoid regression
outputs of all decode layers. Each is a 4D-tensor with
normalized coordinate format (cx, cy, w, h) and shape
[nb_dec, bs, num_query, 4].
enc_cls_scores (Tensor): Classification scores of
points on encode feature map , has shape
(N, h*w, num_classes). Only be passed when as_two_stage is
True, otherwise is None.
enc_bbox_preds (Tensor): Regression results of each points
on the encode feature map, has shape (N, h*w, 4). Only be
passed when as_two_stage is True, otherwise is None.
gt_bboxes_ignore (list[Tensor], optional): Bounding boxes
which can be ignored for each image. Default None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert gt_bboxes_ignore is None, \
f'{self.__class__.__name__} only supports ' \
f'for gt_bboxes_ignore setting to None.'
all_cls_scores = preds_dicts['all_cls_scores']
all_bbox_preds = preds_dicts['all_bbox_preds']
enc_cls_scores = preds_dicts['enc_cls_scores']
enc_bbox_preds = preds_dicts['enc_bbox_preds']
num_dec_layers = len(all_cls_scores)
device = gt_labels_list[0].device
gt_bboxes_list = [
torch.cat((gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]),
dim=1).to(device) for gt_bboxes in gt_bboxes_list
]
all_gt_bboxes_list = [gt_bboxes_list for _ in range(num_dec_layers)]
all_gt_labels_list = [[gt_labels_list] for _ in range(num_dec_layers)]
all_gt_bboxes_ignore_list = [
gt_bboxes_ignore for _ in range(num_dec_layers)
]
losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single,
all_cls_scores, all_bbox_preds,
all_gt_bboxes_list,
all_gt_labels_list,
all_gt_bboxes_ignore_list)
loss_dict = dict()
# loss of proposal generated from encode feature map.
if enc_cls_scores is not None:
binary_labels_list = [
torch.zeros_like(gt_labels_list[i])
for i in range(len(all_gt_labels_list))
]
enc_loss_cls, enc_losses_bbox = \
self.loss_single(enc_cls_scores, enc_bbox_preds,
gt_bboxes_list, binary_labels_list,
gt_bboxes_ignore)
loss_dict['enc_loss_cls'] = enc_loss_cls
loss_dict['enc_loss_bbox'] = enc_losses_bbox
# loss from the last decoder layer
loss_dict['loss_cls'] = losses_cls[-1]
loss_dict['loss_bbox'] = losses_bbox[-1]
# loss from other decoder layers
num_dec_layer = 0
for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]):
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
num_dec_layer += 1
return loss_dict
def get_bboxes(self, preds_dicts, img_metas, rescale=False):
"""Generate bboxes from bbox head predictions.
Args:
preds_dicts (tuple[list[dict]]): Prediction results.
img_metas (list[dict]): Point cloud and image's meta info.
Returns:
list[dict]: Decoded bbox, scores and labels after nms.
"""
preds_dicts = self.bbox_coder.decode(preds_dicts)
num_samples = len(preds_dicts)
ret_list = []
for i in range(num_samples):
preds = preds_dicts[i]
bboxes = preds['bboxes']
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
bboxes = img_metas[i]['box_type_3d'](bboxes, bboxes.size(-1))
scores = preds['scores']
labels = preds['labels']
ret_list.append([bboxes, scores, labels])
return ret_list