|
_base_ = [ |
|
|
|
'../../../configs/_base_/default_runtime.py' |
|
] |
|
|
|
custom_imports = dict(imports=['projects.DETR3D.detr3d']) |
|
|
|
|
|
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] |
|
voxel_size = [0.2, 0.2, 8] |
|
|
|
img_norm_cfg = dict( |
|
mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False) |
|
|
|
class_names = [ |
|
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier', |
|
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone' |
|
] |
|
|
|
input_modality = dict( |
|
use_lidar=False, |
|
use_camera=True, |
|
use_radar=False, |
|
use_map=False, |
|
use_external=False) |
|
|
|
default_scope = 'mmdet3d' |
|
model = dict( |
|
type='DETR3D', |
|
use_grid_mask=True, |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', **img_norm_cfg, pad_size_divisor=32), |
|
img_backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN2d', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), |
|
stage_with_dcn=(False, False, True, True)), |
|
img_neck=dict( |
|
type='mmdet.FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
start_level=1, |
|
add_extra_convs='on_output', |
|
num_outs=4, |
|
relu_before_extra_convs=True), |
|
pts_bbox_head=dict( |
|
type='DETR3DHead', |
|
num_query=900, |
|
num_classes=10, |
|
in_channels=256, |
|
sync_cls_avg_factor=True, |
|
with_box_refine=True, |
|
as_two_stage=False, |
|
transformer=dict( |
|
type='Detr3DTransformer', |
|
decoder=dict( |
|
type='Detr3DTransformerDecoder', |
|
num_layers=6, |
|
return_intermediate=True, |
|
transformerlayers=dict( |
|
type='mmdet.DetrTransformerDecoderLayer', |
|
attn_cfgs=[ |
|
dict( |
|
type='MultiheadAttention', |
|
embed_dims=256, |
|
num_heads=8, |
|
dropout=0.1), |
|
dict( |
|
type='Detr3DCrossAtten', |
|
pc_range=point_cloud_range, |
|
num_points=1, |
|
embed_dims=256) |
|
], |
|
feedforward_channels=512, |
|
ffn_dropout=0.1, |
|
operation_order=('self_attn', 'norm', 'cross_attn', 'norm', |
|
'ffn', 'norm')))), |
|
bbox_coder=dict( |
|
type='NMSFreeCoder', |
|
post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0], |
|
pc_range=point_cloud_range, |
|
max_num=300, |
|
voxel_size=voxel_size, |
|
num_classes=10), |
|
positional_encoding=dict( |
|
type='mmdet.SinePositionalEncoding', |
|
num_feats=128, |
|
normalize=True, |
|
offset=-0.5), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=2.0), |
|
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=0.25), |
|
loss_iou=dict(type='mmdet.GIoULoss', loss_weight=0.0)), |
|
|
|
train_cfg=dict( |
|
pts=dict( |
|
grid_size=[512, 512, 1], |
|
voxel_size=voxel_size, |
|
point_cloud_range=point_cloud_range, |
|
out_size_factor=4, |
|
assigner=dict( |
|
type='HungarianAssigner3D', |
|
cls_cost=dict(type='mmdet.FocalLossCost', weight=2.0), |
|
reg_cost=dict(type='BBox3DL1Cost', weight=0.25), |
|
|
|
iou_cost=dict(type='mmdet.IoUCost', weight=0.0), |
|
pc_range=point_cloud_range)))) |
|
|
|
dataset_type = 'NuScenesDataset' |
|
data_root = 'data/nuscenes/' |
|
|
|
test_transforms = [ |
|
dict( |
|
type='RandomResize3D', |
|
scale=(1600, 900), |
|
ratio_range=(1., 1.), |
|
keep_ratio=True) |
|
] |
|
train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms |
|
|
|
backend_args = None |
|
train_pipeline = [ |
|
dict( |
|
type='LoadMultiViewImageFromFiles', |
|
to_float32=True, |
|
num_views=6, |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadAnnotations3D', |
|
with_bbox_3d=True, |
|
with_label_3d=True, |
|
with_attr_label=False), |
|
dict(type='MultiViewWrapper', transforms=train_transforms), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectNameFilter', classes=class_names), |
|
dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
|
|
test_pipeline = [ |
|
dict( |
|
type='LoadMultiViewImageFromFiles', |
|
to_float32=True, |
|
num_views=6, |
|
backend_args=backend_args), |
|
dict(type='MultiViewWrapper', transforms=test_transforms), |
|
dict(type='Pack3DDetInputs', keys=['img']) |
|
] |
|
|
|
metainfo = dict(classes=class_names) |
|
data_prefix = dict( |
|
pts='', |
|
CAM_FRONT='samples/CAM_FRONT', |
|
CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT', |
|
CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT', |
|
CAM_BACK='samples/CAM_BACK', |
|
CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT', |
|
CAM_BACK_LEFT='samples/CAM_BACK_LEFT') |
|
|
|
train_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_train.pkl', |
|
pipeline=train_pipeline, |
|
load_type='frame_based', |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
test_mode=False, |
|
data_prefix=data_prefix, |
|
|
|
|
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=4, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='nuscenes_infos_val.pkl', |
|
load_type='frame_based', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
modality=input_modality, |
|
test_mode=True, |
|
data_prefix=data_prefix, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict( |
|
type='NuScenesMetric', |
|
data_root=data_root, |
|
ann_file=data_root + 'nuscenes_infos_val.pkl', |
|
metric='bbox', |
|
backend_args=backend_args) |
|
test_evaluator = val_evaluator |
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=2e-4, weight_decay=0.01), |
|
paramwise_cfg=dict(custom_keys={'img_backbone': dict(lr_mult=0.1)}), |
|
clip_grad=dict(max_norm=35, norm_type=2), |
|
) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', |
|
start_factor=1.0 / 3, |
|
by_epoch=False, |
|
begin=0, |
|
end=500), |
|
dict( |
|
type='CosineAnnealingLR', |
|
by_epoch=True, |
|
begin=0, |
|
end=24, |
|
T_max=24, |
|
eta_min_ratio=1e-3) |
|
] |
|
|
|
total_epochs = 24 |
|
|
|
train_cfg = dict( |
|
type='EpochBasedTrainLoop', max_epochs=total_epochs, val_interval=2) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
default_hooks = dict( |
|
checkpoint=dict( |
|
type='CheckpointHook', interval=1, max_keep_ckpts=1, save_last=True)) |
|
load_from = 'ckpts/fcos3d.pth' |
|
|
|
|
|
|
|
vis_backends = [dict(type='TensorboardVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|