giantmonkeyTC
2344
34d1f8b
raw
history blame contribute delete
6.13 kB
# Copyright (c) OpenMMLab. All rights reserved.
from mmdet3d.models.layers import make_sparse_convmodule
from mmdet3d.models.layers.spconv import IS_SPCONV2_AVAILABLE
from mmdet3d.models.middle_encoders import SparseEncoder
from mmdet3d.registry import MODELS
if IS_SPCONV2_AVAILABLE:
from spconv.pytorch import SparseConvTensor
else:
from mmcv.ops import SparseConvTensor
@MODELS.register_module()
class BEVFusionSparseEncoder(SparseEncoder):
r"""Sparse encoder for BEVFusion. The difference between this
implementation and that of ``SparseEncoder`` is that the shape order of 3D
conv is (H, W, D) in ``BEVFusionSparseEncoder`` rather than (D, H, W) in
``SparseEncoder``. This difference comes from the implementation of
``voxelization``.
Args:
in_channels (int): The number of input channels.
sparse_shape (list[int]): The sparse shape of input tensor.
order (list[str], optional): Order of conv module.
Defaults to ('conv', 'norm', 'act').
norm_cfg (dict, optional): Config of normalization layer. Defaults to
dict(type='BN1d', eps=1e-3, momentum=0.01).
base_channels (int, optional): Out channels for conv_input layer.
Defaults to 16.
output_channels (int, optional): Out channels for conv_out layer.
Defaults to 128.
encoder_channels (tuple[tuple[int]], optional):
Convolutional channels of each encode block.
Defaults to ((16, ), (32, 32, 32), (64, 64, 64), (64, 64, 64)).
encoder_paddings (tuple[tuple[int]], optional):
Paddings of each encode block.
Defaults to ((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1, 1)).
block_type (str, optional): Type of the block to use.
Defaults to 'conv_module'.
return_middle_feats (bool): Whether output middle features.
Default to False.
"""
def __init__(self,
in_channels,
sparse_shape,
order=('conv', 'norm', 'act'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
base_channels=16,
output_channels=128,
encoder_channels=((16, ), (32, 32, 32), (64, 64, 64), (64, 64,
64)),
encoder_paddings=((1, ), (1, 1, 1), (1, 1, 1), ((0, 1, 1), 1,
1)),
block_type='conv_module',
return_middle_feats=False):
super(SparseEncoder, self).__init__()
assert block_type in ['conv_module', 'basicblock']
self.sparse_shape = sparse_shape
self.in_channels = in_channels
self.order = order
self.base_channels = base_channels
self.output_channels = output_channels
self.encoder_channels = encoder_channels
self.encoder_paddings = encoder_paddings
self.stage_num = len(self.encoder_channels)
self.fp16_enabled = False
self.return_middle_feats = return_middle_feats
# Spconv init all weight on its own
assert isinstance(order, tuple) and len(order) == 3
assert set(order) == {'conv', 'norm', 'act'}
if self.order[0] != 'conv': # pre activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d',
order=('conv', ))
else: # post activate
self.conv_input = make_sparse_convmodule(
in_channels,
self.base_channels,
3,
norm_cfg=norm_cfg,
padding=1,
indice_key='subm1',
conv_type='SubMConv3d')
encoder_out_channels = self.make_encoder_layers(
make_sparse_convmodule,
norm_cfg,
self.base_channels,
block_type=block_type)
self.conv_out = make_sparse_convmodule(
encoder_out_channels,
self.output_channels,
kernel_size=(1, 1, 3),
stride=(1, 1, 2),
norm_cfg=norm_cfg,
padding=0,
indice_key='spconv_down2',
conv_type='SparseConv3d')
def forward(self, voxel_features, coors, batch_size):
"""Forward of SparseEncoder.
Args:
voxel_features (torch.Tensor): Voxel features in shape (N, C).
coors (torch.Tensor): Coordinates in shape (N, 4),
the columns in the order of (batch_idx, z_idx, y_idx, x_idx).
batch_size (int): Batch size.
Returns:
torch.Tensor | tuple[torch.Tensor, list]: Return spatial features
include:
- spatial_features (torch.Tensor): Spatial features are out from
the last layer.
- encode_features (List[SparseConvTensor], optional): Middle layer
output features. When self.return_middle_feats is True, the
module returns middle features.
"""
coors = coors.int()
input_sp_tensor = SparseConvTensor(voxel_features, coors,
self.sparse_shape, batch_size)
x = self.conv_input(input_sp_tensor)
encode_features = []
for encoder_layer in self.encoder_layers:
x = encoder_layer(x)
encode_features.append(x)
# for detection head
# [200, 176, 5] -> [200, 176, 2]
out = self.conv_out(encode_features[-1])
spatial_features = out.dense()
N, C, H, W, D = spatial_features.shape
spatial_features = spatial_features.permute(0, 1, 4, 2, 3).contiguous()
spatial_features = spatial_features.view(N, C * D, H, W)
if self.return_middle_feats:
return spatial_features, encode_features
else:
return spatial_features