|
import torch |
|
|
|
from . import bev_pool_ext |
|
|
|
|
|
class QuickCumsum(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, geom_feats, ranks): |
|
x = x.cumsum(0) |
|
kept = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) |
|
kept[:-1] = ranks[1:] != ranks[:-1] |
|
|
|
x, geom_feats = x[kept], geom_feats[kept] |
|
x = torch.cat((x[:1], x[1:] - x[:-1])) |
|
|
|
|
|
ctx.save_for_backward(kept) |
|
|
|
|
|
ctx.mark_non_differentiable(geom_feats) |
|
|
|
return x, geom_feats |
|
|
|
@staticmethod |
|
def backward(ctx, gradx, gradgeom): |
|
(kept, ) = ctx.saved_tensors |
|
back = torch.cumsum(kept, 0) |
|
back[kept] -= 1 |
|
|
|
val = gradx[back] |
|
|
|
return val, None, None |
|
|
|
|
|
class QuickCumsumCuda(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, geom_feats, ranks, B, D, H, W): |
|
kept = torch.ones(x.shape[0], device=x.device, dtype=torch.bool) |
|
kept[1:] = ranks[1:] != ranks[:-1] |
|
interval_starts = torch.where(kept)[0].int() |
|
interval_lengths = torch.zeros_like(interval_starts) |
|
interval_lengths[:-1] = interval_starts[1:] - interval_starts[:-1] |
|
interval_lengths[-1] = x.shape[0] - interval_starts[-1] |
|
geom_feats = geom_feats.int() |
|
|
|
out = bev_pool_ext.bev_pool_forward( |
|
x, |
|
geom_feats, |
|
interval_lengths, |
|
interval_starts, |
|
B, |
|
D, |
|
H, |
|
W, |
|
) |
|
|
|
ctx.save_for_backward(interval_starts, interval_lengths, geom_feats) |
|
ctx.saved_shapes = B, D, H, W |
|
return out |
|
|
|
@staticmethod |
|
def backward(ctx, out_grad): |
|
interval_starts, interval_lengths, geom_feats = ctx.saved_tensors |
|
B, D, H, W = ctx.saved_shapes |
|
|
|
out_grad = out_grad.contiguous() |
|
x_grad = bev_pool_ext.bev_pool_backward( |
|
out_grad, |
|
geom_feats, |
|
interval_lengths, |
|
interval_starts, |
|
B, |
|
D, |
|
H, |
|
W, |
|
) |
|
|
|
return x_grad, None, None, None, None, None, None |
|
|
|
|
|
def bev_pool(feats, coords, B, D, H, W): |
|
assert feats.shape[0] == coords.shape[0] |
|
|
|
ranks = ( |
|
coords[:, 0] * (W * D * B) + coords[:, 1] * (D * B) + |
|
coords[:, 2] * B + coords[:, 3]) |
|
indices = ranks.argsort() |
|
feats, coords, ranks = feats[indices], coords[indices], ranks[indices] |
|
|
|
x = QuickCumsumCuda.apply(feats, coords, ranks, B, D, H, W) |
|
x = x.permute(0, 4, 1, 2, 3).contiguous() |
|
return x |
|
|