giantmonkeyTC
2344
34d1f8b
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from typing import Tuple
import numpy as np
import torch
import trimesh
from mmdet3d.structures import (BaseInstance3DBoxes, Box3DMode,
CameraInstance3DBoxes, Coord3DMode,
DepthInstance3DBoxes, LiDARInstance3DBoxes)
def write_obj(points: np.ndarray, out_filename: str) -> None:
"""Write points into ``obj`` format for meshlab visualization.
Args:
points (np.ndarray): Points in shape (N, dim).
out_filename (str): Filename to be saved.
"""
N = points.shape[0]
fout = open(out_filename, 'w')
for i in range(N):
if points.shape[1] == 6:
c = points[i, 3:].astype(int)
fout.write(
'v %f %f %f %d %d %d\n' %
(points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2]))
else:
fout.write('v %f %f %f\n' %
(points[i, 0], points[i, 1], points[i, 2]))
fout.close()
def write_oriented_bbox(scene_bbox: np.ndarray, out_filename: str) -> None:
"""Export oriented (around Z axis) scene bbox to meshes.
Args:
scene_bbox (np.ndarray): xyz pos of center and 3 lengths
(x_size, y_size, z_size) and heading angle around Z axis.
Y forward, X right, Z upward, heading angle of positive X is 0,
heading angle of positive Y is 90 degrees.
out_filename (str): Filename.
"""
def heading2rotmat(heading_angle: float) -> np.ndarray:
rotmat = np.zeros((3, 3))
rotmat[2, 2] = 1
cosval = np.cos(heading_angle)
sinval = np.sin(heading_angle)
rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]])
return rotmat
def convert_oriented_box_to_trimesh_fmt(
box: np.ndarray) -> trimesh.base.Trimesh:
ctr = box[:3]
lengths = box[3:6]
trns = np.eye(4)
trns[0:3, 3] = ctr
trns[3, 3] = 1.0
trns[0:3, 0:3] = heading2rotmat(box[6])
box_trimesh_fmt = trimesh.creation.box(lengths, trns)
return box_trimesh_fmt
if len(scene_bbox) == 0:
scene_bbox = np.zeros((1, 7))
scene = trimesh.scene.Scene()
for box in scene_bbox:
scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box))
mesh_list = trimesh.util.concatenate(scene.dump())
# save to obj file
trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='obj')
def to_depth_mode(
points: np.ndarray,
bboxes: BaseInstance3DBoxes) -> Tuple[np.ndarray, BaseInstance3DBoxes]:
"""Convert points and bboxes to Depth Coord and Depth Box mode."""
if points is not None:
points = Coord3DMode.convert_point(points.copy(), Coord3DMode.LIDAR,
Coord3DMode.DEPTH)
if bboxes is not None:
bboxes = Box3DMode.convert(bboxes.clone(), Box3DMode.LIDAR,
Box3DMode.DEPTH)
return points, bboxes
# TODO: refactor lidar2img to img_meta
def proj_lidar_bbox3d_to_img(bboxes_3d: LiDARInstance3DBoxes,
input_meta: dict) -> np.ndarray:
"""Project the 3D bbox on 2D plane.
Args:
bboxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bbox in lidar coordinate
system to visualize.
input_meta (dict): Meta information.
"""
corners_3d = bboxes_3d.corners.cpu().numpy()
num_bbox = corners_3d.shape[0]
pts_4d = np.concatenate(
[corners_3d.reshape(-1, 3),
np.ones((num_bbox * 8, 1))], axis=-1)
lidar2img = copy.deepcopy(input_meta['lidar2img']).reshape(4, 4)
if isinstance(lidar2img, torch.Tensor):
lidar2img = lidar2img.cpu().numpy()
pts_2d = pts_4d @ lidar2img.T
pts_2d[:, 2] = np.clip(pts_2d[:, 2], a_min=1e-5, a_max=1e5)
pts_2d[:, 0] /= pts_2d[:, 2]
pts_2d[:, 1] /= pts_2d[:, 2]
imgfov_pts_2d = pts_2d[..., :2].reshape(num_bbox, 8, 2)
return imgfov_pts_2d
# TODO: remove third parameter in all functions here in favour of img_metas
def proj_depth_bbox3d_to_img(bboxes_3d: DepthInstance3DBoxes,
input_meta: dict) -> np.ndarray:
"""Project the 3D bbox on 2D plane and draw on input image.
Args:
bboxes_3d (:obj:`DepthInstance3DBoxes`): 3D bbox in depth coordinate
system to visualize.
input_meta (dict): Meta information.
"""
from mmdet3d.models import apply_3d_transformation
from mmdet3d.structures import points_cam2img
input_meta = copy.deepcopy(input_meta)
corners_3d = bboxes_3d.corners
num_bbox = corners_3d.shape[0]
points_3d = corners_3d.reshape(-1, 3)
# first reverse the data transformations
xyz_depth = apply_3d_transformation(
points_3d, 'DEPTH', input_meta, reverse=True)
# project to 2d to get image coords (uv)
uv_origin = points_cam2img(xyz_depth,
xyz_depth.new_tensor(input_meta['depth2img']))
uv_origin = (uv_origin - 1).round()
imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()
return imgfov_pts_2d
# project the camera bboxes 3d to image
def proj_camera_bbox3d_to_img(bboxes_3d: CameraInstance3DBoxes,
input_meta: dict) -> np.ndarray:
"""Project the 3D bbox on 2D plane and draw on input image.
Args:
bboxes_3d (:obj:`CameraInstance3DBoxes`): 3D bbox in camera coordinate
system to visualize.
input_meta (dict): Meta information.
"""
from mmdet3d.structures import points_cam2img
cam2img = copy.deepcopy(input_meta['cam2img'])
corners_3d = bboxes_3d.corners
num_bbox = corners_3d.shape[0]
points_3d = corners_3d.reshape(-1, 3)
if not isinstance(cam2img, torch.Tensor):
cam2img = torch.from_numpy(np.array(cam2img))
assert (cam2img.shape == torch.Size([3, 3])
or cam2img.shape == torch.Size([4, 4]))
cam2img = cam2img.float().cpu()
# project to 2d to get image coords (uv)
uv_origin = points_cam2img(points_3d, cam2img)
uv_origin = (uv_origin - 1).round()
imgfov_pts_2d = uv_origin[..., :2].reshape(num_bbox, 8, 2).numpy()
return imgfov_pts_2d